Lower bounds of the Laplacian spectrum of graphs based on diameter
暂无分享,去创建一个
Mei Lu | Feng Tian | Lian-zhu Zhang | F. Tian | Mei Lu | Lian-zhu Zhang
[1] R. Merris. Characteristic vertices of trees , 1987 .
[2] Bojan Mohar,et al. Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..
[3] Oscar Rojo,et al. An always nontrivial upper bound for Laplacian graph eigenvalues , 2000 .
[4] R. Merris. Laplacian matrices of graphs: a survey , 1994 .
[5] F. Chung. Diameters and eigenvalues , 1989 .
[6] Xiao-Dong Zhang,et al. On the Laplacian eigenvalues of a graph , 1998 .
[7] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[8] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] R. Grone,et al. Algebraic connectivity of trees , 1987 .
[11] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[12] R. Merris. A note on Laplacian graph eigenvalues , 1998 .
[13] Steve Kirkland,et al. A bound on the algebraic connectivity of a graph in terms of the number of cutpoints , 2000 .