Spatially resolved, high-dimensional transcriptomics sorts out the evolution of biphasic malignant pleural mesothelioma: new paradigms for immunotherapy

[1]  K. Kitajima,et al.  Combination therapy with anti-programmed cell death 1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation. , 2023, Lung cancer.

[2]  P. Courtiol,et al.  Multiomic analysis of malignant pleural mesothelioma identifies molecular axes and specialized tumor profiles driving intertumor heterogeneity , 2023, Nature Genetics.

[3]  J. Pollard,et al.  A timeline of tumour-associated macrophage biology , 2023, Nature Reviews Cancer.

[4]  P. Zucali,et al.  Immunotherapy with immune checkpoint inhibitors and predictive biomarkers in malignant mesothelioma: Work still in progress , 2023, Frontiers in Immunology.

[5]  K. Kitajima,et al.  Efficacy and safety of nivolumab with ipilimumab for recurrent malignant pleural mesothelioma after primary surgical intervention , 2023, International Journal of Clinical Oncology.

[6]  T. Yang,et al.  Unraveling tumor microenvironment heterogeneity in malignant pleural mesothelioma identifies biologically distinct immune subtypes enabling prognosis determination , 2022, Frontiers in Oncology.

[7]  P. Allavena,et al.  Macrophages as tools and targets in cancer therapy , 2022, Nature Reviews Drug Discovery.

[8]  Zhuomiao Ye,et al.  Cost-effectiveness of nivolumab plus ipilimumab as first-line treatment for American patients with unresectable malignant pleural mesothelioma , 2022, Frontiers in Public Health.

[9]  L. Paavolainen,et al.  Prognostic Role of Tumor Immune Microenvironment in Pleural Epithelioid Mesothelioma , 2022, Frontiers in Oncology.

[10]  J. Pearson,et al.  Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma , 2022, Genome medicine.

[11]  M. Pittet,et al.  Clinical relevance of tumour-associated macrophages , 2022, Nature Reviews Clinical Oncology.

[12]  M. Krstic-Demonacos,et al.  Comparison of 3 Randomized Clinical Trials of Frontline Therapies for Malignant Pleural Mesothelioma , 2022, JAMA network open.

[13]  A. Mansfield,et al.  First-line nivolumab plus ipilimumab versus chemotherapy in patients with unresectable malignant pleural mesothelioma: 3-year outcomes from CheckMate 743. , 2022, Annals of oncology : official journal of the European Society for Medical Oncology.

[14]  A. Nowak,et al.  Immune checkpoint inhibitor therapy for malignant pleural mesothelioma. , 2021, Lung cancer.

[15]  C. Richards,et al.  Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial , 2021, The Lancet. Oncology.

[16]  D. Fennell,et al.  Perspectives on the Treatment of Malignant Pleural Mesothelioma. , 2021, The New England journal of medicine.

[17]  Guangdong Yang,et al.  H2S signaling and extracellular matrix remodeling in cardiovascular diseases: a tale of tense relationship. , 2021, Nitric oxide.

[18]  F. Kong,et al.  Advances in Immunotherapy of Malignant Pleural Mesothelioma , 2021, OncoTargets and therapy.

[19]  I. Kalomenidis,et al.  CSF1/CSF1R Axis Blockade Limits Mesothelioma and Enhances Efficiency of Anti-PDL1 Immunotherapy , 2021, Cancers.

[20]  A. Mansfield,et al.  First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial , 2021, The Lancet.

[21]  V. Marx Method of the Year: spatially resolved transcriptomics , 2021, Nature Methods.

[22]  J. Lundeberg,et al.  Spatially resolved transcriptomics adds a new dimension to genomics , 2021, Nature Methods.

[23]  A. Erez,et al.  Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. , 2020, Cancer discovery.

[24]  Z. Werb,et al.  Concepts of extracellular matrix remodelling in tumour progression and metastasis , 2020, Nature Communications.

[25]  S. Hirota,et al.  Tumor‐associated macrophage‐derived inflammatory cytokine enhances malignant potential of malignant pleural mesothelioma , 2020, Cancer science.

[26]  T. John,et al.  Preliminary study highlights the potential of immune checkpoint inhibitors in sarcomatoid mesothelioma , 2020, Translational lung cancer research.

[27]  G. Wainrib,et al.  Comprehensive molecular and pathological evaluation of transitional mesothelioma assisted by deep learning approach: a multi institutional study of the International Mesothelioma Panel from MESOPATH Reference Center. , 2020, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[28]  M. Schuler,et al.  Detection of TGF-β in pleural effusions for diagnosis and prognostic stratification of malignant pleural mesothelioma. , 2019, Lung cancer.

[29]  V. Berti,et al.  A Gene Expression–based Model to Predict Metabolic Response After Two Courses of ABVD in Hodgkin Lymphoma Patients , 2019, Clinical Cancer Research.

[30]  G. Wainrib,et al.  Deep learning-based classification of mesothelioma improves prediction of patient outcome , 2019, Nature Medicine.

[31]  F. Greten,et al.  Inflammation and Cancer: Triggers, Mechanisms, and Consequences. , 2019, Immunity.

[32]  M. Okada,et al.  Clinical Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-label, Single-arm, Japanese Phase II study in Malignant Pleural Mesothelioma (MERIT) , 2019, Clinical Cancer Research.

[33]  J. Zucman‐Rossi,et al.  Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications , 2019, Nature Communications.

[34]  G. Rossi,et al.  An Epithelial-to-Mesenchymal Transcriptional Switch Triggers Evolution of Pulmonary Sarcomatoid Carcinoma (PSC) and Identifies Dasatinib as New Therapeutic Option , 2018, Clinical Cancer Research.

[35]  P. Bose,et al.  TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure , 2018, Nature Communications.

[36]  P. Bose,et al.  TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure , 2018, Nature Communications.

[37]  R. Weinberg,et al.  New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer , 2018, Nature reviews. Molecular cell biology.

[38]  David L. Gibbs,et al.  Integrative Molecular Characterization of Malignant Pleural Mesothelioma. , 2018, Cancer discovery.

[39]  E. Thunnissen,et al.  Programmed Death 1 Blockade With Nivolumab in Patients With Recurrent Malignant Pleural Mesothelioma , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[40]  N. Le Stang,et al.  New Insights on Diagnostic Reproducibility of Biphasic Mesotheliomas: A Multi‐Institutional Evaluation by the International Mesothelioma Panel From the MESOPATH Reference Center , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[41]  M. Mann,et al.  L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity , 2016, Cell.

[42]  J. Aerts,et al.  Pleural Effusion of Patients with Malignant Mesothelioma Induces Macrophage‐Mediated T Cell Suppression , 2016, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[43]  F. Berberich-Siebelt,et al.  Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4 , 2016, Proceedings of the National Academy of Sciences.

[44]  Thomas D. Wu,et al.  Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations , 2016, Nature Genetics.

[45]  S. Toyokuni,et al.  Malignant mesothelioma as an oxidative stress-induced cancer: An update. , 2015, Free radical biology & medicine.

[46]  Z. Werb,et al.  Remodelling the extracellular matrix in development and disease , 2014, Nature Reviews Molecular Cell Biology.

[47]  David J Mooney,et al.  Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. , 2014, Nature materials.

[48]  S. Goerdt,et al.  Macrophage activation and polarization: nomenclature and experimental guidelines. , 2014, Immunity.

[49]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[50]  F. Galateau-Sallé,et al.  Molecular Classification of Malignant Pleural Mesothelioma: Identification of a Poor Prognosis Subgroup Linked to the Epithelial-to-Mesenchymal Transition , 2014, Clinical Cancer Research.

[51]  D. Henderson,et al.  Accuracy of Diagnostic Biopsy for the Histological Subtype of Malignant Pleural Mesothelioma , 2011, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[52]  Jeffrey W. Pollard,et al.  Macrophage Diversity Enhances Tumor Progression and Metastasis , 2010, Cell.

[53]  Srinivas Nagaraj,et al.  Myeloid-derived suppressor cells as regulators of the immune system , 2009, Nature Reviews Immunology.

[54]  F. Barlesi,et al.  Accuracy of pleural biopsy using thoracoscopy for the diagnosis of histologic subtype in patients with malignant pleural mesothelioma , 2007, Cancer.

[55]  D. Sugarbaker,et al.  Pleural biopsy: a reliable method for determining the diagnosis but not subtype in mesothelioma. , 2004, The Annals of thoracic surgery.

[56]  M. Fassan,et al.  Epithelial–mesenchymal transition in malignant mesothelioma , 2012, Modern Pathology.

[57]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[58]  J. Higginson,et al.  International Agency for Research on Cancer. , 1968, WHO chronicle.