Spectral gradient: a material descriptor invariant to geometry and incident illumination

The light reflected from a surface depends on the scene geometry, the incident illumination and the surface material. A novel methodology is presented which extracts reflectivity information of the various materials in the scene independent of incident light and scene geometry. A scene is captured under different narrow-band color filters and the spectral derivatives of the scene are computed. The resulting spectral derivatives form a spectral gradient at each pixel. This spectral gradient is a material descriptor which is invariant to scene geometry and incident illumination for smooth diffuse surfaces. Spectral gradients can discriminate among smooth dielectrics with different reflectance properties independent of viewing conditions.

[1]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[2]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[3]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[4]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[5]  Mark S. Drew,et al.  Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  L. B. Wolff,et al.  3-D Stereo Using Photometric Ratios , 1994, ECCV.

[7]  G. Healey,et al.  Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions , 1994 .

[8]  L. B. Wolff Diffuse-reflectance model for smooth dielectric surfaces , 1994 .

[9]  L. B. Wolff,et al.  Three-dimensional stereo by photometric ratios , 1994 .

[10]  M. S. Drew,et al.  Color constancy - Generalized diagonal transforms suffice , 1994 .

[11]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  G. Healey,et al.  Illumination-invariant recognition of texture in color images , 1995 .

[13]  Glenn Healey,et al.  Using a spectral reflectance model for the illumination-invariant recognition of local image structure , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Elli Angelopoulou,et al.  Curvature Based Signatures for Object Description and Recognition , 1996, Object Representation in Computer Vision.

[16]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Elli Angelopoulou,et al.  A curvature based descriptor invariant to pose and albedo derived from photometric data , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  E. Angelopoulou Photometric invariance in shape analysis , 1997 .

[20]  Brian V. Funt,et al.  Color Constancy for Scenes with Varying Illumination , 1997, Comput. Vis. Image Underst..

[21]  Glenn Healey,et al.  Object recognition using invariant profiles , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Sang Wook Lee,et al.  Using chromaticity distributions and eigenspace analysis for pose-, illumination-, and specularity-invariant recognition of 3D objects , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Elli Angelopoulou,et al.  Photometric computation of the sign of Gaussian curvature using a curve-orientation invariant , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Ronen Basri,et al.  Comparing images under variable illumination , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[25]  Elli Angelopoulou,et al.  Sign of Gaussian Curvature From Curve Orientation in Photometric Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Glenn Healey,et al.  What is the spectral dimensionality of illumination functions in outdoor scenes? , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[27]  Ruzena Bajcsy,et al.  Spectral Gradient: A Surface Reflectance Measurement Invariant to Geometry and Incident Illumination , 1999 .

[28]  E. Angelopoulou Gaussian curvature from photometric scatter plots , 1999, Proceedings Workshop on Photometric Modeling for Computer Vision and Graphics (Cat. No.PR00271).

[29]  Elli Angelopoulou,et al.  Photometric surface analysis in a tri-luminal environment , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Elli Angelopoulou,et al.  The Reflectance Spectrum of Human Skin , 1999 .

[31]  Elli Angelopoulou,et al.  Objective Colour from Multispectral Imaging , 2000, ECCV.

[32]  Elli Angelopoulou,et al.  Understanding the color of human skin , 2001, IS&T/SPIE Electronic Imaging.

[33]  Elli Angelopoulou,et al.  Multispectral skin color modeling , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.