Debiased Inference of Average Partial Effects in Single-Index Models

We propose a method for average partial effect estimation in high-dimensional single-index models that is root-n-consistent and asymptotically unbiased given sparsity assumptions on the underlying regression model. This note was prepared as a comment on Wooldridge and Zhu [2018], forthcoming in the Journal of Business and Economic Statistics.

[1]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[2]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[3]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[4]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[5]  J. Robins,et al.  Locally Robust Semiparametric Estimation , 2016, Econometrica.

[6]  A. Belloni,et al.  Inference on Treatment Effects after Selection Amongst High-Dimensional Controls , 2011, 1201.0224.

[7]  M. Farrell Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations , 2013, 1309.4686.

[8]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[9]  P. Massart Some applications of concentration inequalities to statistics , 2000 .

[10]  A. Belloni,et al.  Program evaluation and causal inference with high-dimensional data , 2013, 1311.2645.

[11]  David A. Hirshberg,et al.  Balancing Out Regression Error: Efficient Treatment Effect Estimation without Smooth Propensities , 2017 .

[12]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[13]  Stephen P. Boyd,et al.  CVXR: An R Package for Disciplined Convex Optimization , 2017, Journal of Statistical Software.

[14]  Timothy B. Armstrong,et al.  Optimal Inference in a Class of Regression Models , 2015, 1511.06028.

[15]  James M. Robins,et al.  Double/De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers , 2018 .

[16]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[17]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[18]  Ying Zhu,et al.  Inference in Approximately Sparse Correlated Random Effects Probit Models , 2017 .

[19]  J. Robins,et al.  Double/de-biased machine learning using regularized Riesz representers , 2018 .

[20]  J. Robins,et al.  Double/Debiased Machine Learning for Treatment and Structural Parameters , 2017 .

[21]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[22]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[23]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[24]  G. Imbens,et al.  Approximate residual balancing: debiased inference of average treatment effects in high dimensions , 2016, 1604.07125.