Eliminating Design Alternatives Based on Imprecise Information

This paper was presented at the SAE 2006 World Congress, 2006. Reprinted with permission from SAE paper 2006-01-0272 © 2006 SAE International.

[1]  Efstratios Nikolaidis,et al.  Types of Uncertainty in Design Decision Making , 2004 .

[2]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[3]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[4]  Efstratios Nikolaidis,et al.  Engineering Design Reliability Handbook , 2004 .

[5]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[6]  Kathleen V. Diegert,et al.  Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..

[7]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[8]  Paul Garvey,et al.  Probability Methods for Cost Uncertainty Analysis: A Systems Engineering Perspective, Second Edition , 2000 .

[9]  Henry E. Kyburg,et al.  Set-based Bayesianism , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[10]  Steven Joseph Rekuc,et al.  Eliminating Design Alternatives under Interval-Based Uncertainty , 2005 .

[11]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[12]  Yakov Ben-Haim,et al.  Information-gap decision theory , 2001 .

[13]  Wei Chen,et al.  A CONCEPT EXPLORATION METHOD FOR DETERMINING ROBUST TOP-LEVEL SPECIFICATIONS , 1996 .

[14]  Rakesh K. Sarin,et al.  Ranking with Partial Information: A Method and an Application , 1985, Oper. Res..

[15]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[16]  Durward K. Sobek,et al.  The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster , 1995 .

[17]  Scott Ferson,et al.  Probability bounds analysis , 1998 .

[18]  H. Raiffa,et al.  Introduction to Statistical Decision Theory , 1996 .

[19]  Robert L. Mullen,et al.  Interval Methods for Reliable Computing , 2004 .

[20]  Jason Matthew Aughenbaugh,et al.  APPLYING INFORMATION ECONOMICS AND IMPRECISE PROBABILITIES TO DATA COLLECTION IN DESIGN , 2005 .

[21]  Armen Der Kiureghian,et al.  MEASURES OF STRUCTURAL SAFETY UNDER IMPERFECT STATES OF KNOWLEDGE , 1989 .

[22]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[23]  E. Antonsson,et al.  The Method of Imprecision Compared to Utility Theory for Design Selection Problems , 1993 .

[24]  M. Fleischer,et al.  A Marketplace of Design Agents for Distributed Concurrent Set-Based Design 1 , 1997 .

[25]  Daniel Berleant,et al.  Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals , 1998, Reliab. Comput..

[26]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[27]  Marco Zaffalon,et al.  Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data , 2003, Artif. Intell. Medicine.

[28]  Durward K. Sobek,et al.  Toyota's Principles of Set-Based Concurrent Engineering , 1999 .

[29]  Durward K. Sobek,et al.  Adapting real options to new product development by modeling the second Toyota paradox , 2005, IEEE Transactions on Engineering Management.

[30]  I. Levi On Indeterminate Probabilities , 1974 .

[31]  Christiaan J. J. Paredis,et al.  The Role and Limitations of Modeling and Simulation in Systems Design , 2004 .

[32]  Farrokh Mistree,et al.  DECISION-BASED DESIGN - A CONTEMPORARY PARADIGM FOR SHIP DESIGN , 1990 .

[33]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[34]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[35]  Robert L. Winkler,et al.  Uncertainty in probabilistic risk assessment , 1996 .

[36]  Deborah L Thurston,et al.  Fuzzing ratings for multiattribute design decision-making , 1994 .

[37]  Eduard Hofer,et al.  When to separate uncertainties and when not to separate , 1996 .

[38]  Vladik Kreinovich,et al.  From Interval Methods of Representing Uncertainty to a General Description of Uncertainty , 1999 .

[39]  Christiaan J. J. Paredis,et al.  The Value of Using Imprecise Probabilities in Engineering Design , 2006 .

[40]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  Morgan C. Bruns,et al.  Propagation of Imprecise Probabilities through Black Box Models , 2006 .

[42]  M. Schervish,et al.  A Representation of Partially Ordered Preferences , 1995 .

[43]  Gareth W. Parry,et al.  The characterization of uncertainty in probabilistic risk assessments of complex systems , 1996 .

[44]  Satyandra K. Gupta,et al.  Estimating the Optimal Number of Alternatives to Be Explored in Large Design Spaces: A Step Towards Incorporating Decision Making Cost in Design Decision Models , 2002 .

[45]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[46]  F. O. Hoffman,et al.  Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[47]  George A. Hazelrigg,et al.  A Framework for Decision-Based Engineering Design , 1998 .

[48]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .