The Reorienting System of the Human Brain: From Environment to Theory of Mind

[1]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[2]  Jason P. Mitchell Activity in right temporo-parietal junction is not selective for theory-of-mind. , 2008, Cerebral cortex.

[3]  Maurizio Corbetta,et al.  Asymmetry of Anticipatory Activity in Visual Cortex Predicts the Locus of Attention and Perception , 2007, The Journal of Neuroscience.

[4]  Maurizio Corbetta,et al.  The role of impaired neuronal communication in neurological disorders , 2007, Current opinion in neurology.

[5]  Maurizio Corbetta,et al.  Sequential Activation of Human Oculomotor Centers During Planning of Visually-Guided Eye Movements: A Combined fMRI-MEG Study , 2007, Frontiers in human neuroscience.

[6]  Aaron C. Koralek,et al.  Two Takes on the Social Brain: A Comparison of Theory of Mind Tasks , 2007, Journal of Cognitive Neuroscience.

[7]  M. Corbetta,et al.  Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. , 2007, Cerebral cortex.

[8]  J. Decety,et al.  The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[9]  T. Metzinger,et al.  Video Ergo Sum: Manipulating Bodily Self-Consciousness , 2007, Science.

[10]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[11]  Jonathan Berger,et al.  Neural Dynamics of Event Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal Networks , 2007, Neuron.

[12]  E. Macaluso,et al.  Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. , 2007, Cerebral cortex.

[13]  R. Dolan,et al.  β-adrenergic modulation of oddball responses in humans , 2007, Behavioral and Brain Functions.

[14]  John Duncan,et al.  Selective Tuning of the Blood Oxygenation Level-Dependent Response during Simple Target Detection Dissociates Human Frontoparietal Subregions , 2007, The Journal of Neuroscience.

[15]  Abraham Z. Snyder,et al.  Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex , 2007, PloS one.

[16]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[17]  Rafael Malach,et al.  Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. , 2007, Cerebral cortex.

[18]  G. Woodman,et al.  Do the contents of visual working memory automatically influence attentional selection during visual search? , 2007, Journal of experimental psychology. Human perception and performance.

[19]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[20]  Jeffrey M. Zacks,et al.  Event perception: a mind-brain perspective. , 2007, Psychological bulletin.

[21]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[22]  R. Buckner,et al.  Self-projection and the brain , 2007, Trends in Cognitive Sciences.

[23]  Alison J. Wiggett,et al.  Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Investigation of Overlapping Lateral Occipitotemporal Activations Using Multi-Voxel Pattern Analysis , 2006 .

[24]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[25]  Jeffrey G. Lawrence,et al.  Video Ergo Sum: Manipulating Bodily Self-Consciousness , 2007 .

[26]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[27]  F. Patria,et al.  Spatial re-orienting of visual attention along the horizontal or the vertical axis , 2007, Experimental Brain Research.

[28]  G. R. Fink,et al.  The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability , 2006, Neuroscience.

[29]  R. Sparing,et al.  Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction , 2006, Neuroscience.

[30]  Gereon R. Fink,et al.  Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex , 2006, NeuroImage.

[31]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[32]  O. Blanke,et al.  Neural Basis of Embodiment: Distinct Contributions of Temporoparietal Junction and Extrastriate Body Area , 2006, The Journal of Neuroscience.

[33]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[35]  Michelle Hampson,et al.  Connectivity–behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability , 2006, NeuroImage.

[36]  Martin Eimer,et al.  Cortico-cortical interactions in spatial attention: A combined ERP/TMS study. , 2006, Journal of neurophysiology.

[37]  Yehezkel Yeshurun,et al.  Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation , 2006, NeuroImage.

[38]  John C. Adair,et al.  The neural networks underlying endogenous auditory covert orienting and reorienting , 2006, NeuroImage.

[39]  G. Mangun,et al.  Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks , 2006, Brain Research.

[40]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[41]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[42]  Angela J. Yu,et al.  Phasic norepinephrine: A neural interrupt signal for unexpected events , 2006, Network.

[43]  Maurizio Corbetta,et al.  Visuospatial reorienting signals in the human temporo‐parietal junction are independent of response selection , 2006, The European journal of neuroscience.

[44]  Jacqueline C Snow,et al.  Goal-driven selective attention in patients with right hemisphere lesions: how intact is the ipsilesional field? , 2006, Brain : a journal of neurology.

[45]  Jeffrey M. Zacks,et al.  Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses , 2006, Nature Neuroscience.

[46]  M. Corbetta,et al.  Brain signals for spatial attention predict performance in a motion discrimination task. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Abraham Z. Snyder,et al.  Transient BOLD responses at block transitions , 2005, NeuroImage.

[48]  R. Marois,et al.  Visual Short-Term Memory Load Suppresses Temporo-Parietal Junction Activity and Induces Inattentional Blindness , 2005, Psychological science.

[49]  S. Sara,et al.  Network reset: a simplified overarching theory of locus coeruleus noradrenaline function , 2005, Trends in Neurosciences.

[50]  John Duncan,et al.  Attentional functions of parietal and frontal cortex. , 2005, Cerebral cortex.

[51]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.

[52]  Anthony J. Ries,et al.  Automatic Versus Contingent Mechanisms of Sensory-Driven Neural Biasing and Reflexive Attention , 2005, Journal of Cognitive Neuroscience.

[53]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[54]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Vince D. Calhoun,et al.  Hemispheric differences in hemodynamics elicited by auditory oddball stimuli , 2005, NeuroImage.

[56]  Jonathan D. Cohen,et al.  Decision making, the P3, and the locus coeruleus-norepinephrine system. , 2005, Psychological bulletin.

[57]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[58]  B. Rockstroh,et al.  Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades , 2005, Neuroreport.

[59]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[60]  Gregor Thut,et al.  Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. , 2005, Cerebral cortex.

[61]  Luiz Pessoa,et al.  Quantitative prediction of perceptual decisions during near-threshold fear detection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[63]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[64]  O. Blanke,et al.  The Out-of-Body Experience: Disturbed Self-Processing at the Temporo-Parietal Junction , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[65]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[66]  Uta Frith,et al.  Theory of mind , 2001, Current Biology.

[67]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[68]  D. Perrett,et al.  A region of right posterior superior temporal sulcus responds to observed intentional actions , 2004, Neuropsychologia.

[69]  Jason B. Mattingley,et al.  Modality-Specific Control of Strategic Spatial Attention in Parietal Cortex , 2004, Neuron.

[70]  Kevin A. Pelphrey,et al.  Grasping the Intentions of Others: The Perceived Intentionality of an Action Influences Activity in the Superior Temporal Sulcus during Social Perception , 2004, Journal of Cognitive Neuroscience.

[71]  S. Yantis,et al.  Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. , 2004, Journal of neurophysiology.

[72]  Benjamin J. Shannon,et al.  Functional-Anatomic Correlates of Memory Retrieval That Suggest Nontraditional Processing Roles for Multiple Distinct Regions within Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[73]  Jonathan D. Cohen,et al.  Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a Forced-Choice Task , 2004, The Journal of Neuroscience.

[74]  Chris Rorden,et al.  The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. , 2004, Cerebral cortex.

[75]  Igor Schindler,et al.  An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS , 2014 .

[76]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[77]  G. Aston-Jones,et al.  Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. , 2004, Journal of neurophysiology.

[78]  Rainer Goebel,et al.  Attentional systems in target and distractor processing: a combined ERP and fMRI study , 2004, NeuroImage.

[79]  C. Frith,et al.  Neural Correlates of Attentional Capture in Visual Search , 2004, Journal of Cognitive Neuroscience.

[80]  Jan Theeuwes,et al.  Endogenous and exogenous attention shifts are mediated by the same large-scale neural network , 2004, NeuroImage.

[81]  M. Brass,et al.  Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging , 2004, Journal of Cognitive Neuroscience.

[82]  Jillian H. Fecteau,et al.  Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. , 2004, Journal of neurophysiology.

[83]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[84]  Jillian H. Fecteau,et al.  Neural correlates of the automatic and goal-driven biases in orienting spatial attention. , 2004, Journal of neurophysiology.

[85]  Mark E Wheeler,et al.  Functional-anatomic correlates of remembering and knowing , 2004, NeuroImage.

[86]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[87]  M. Goldberg,et al.  A Rapid and Precise On-Response in Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[88]  Christopher Kennard,et al.  Visual neglect associated with frontal lobe infarction , 1996, Journal of Neurology.

[89]  C. Kennard,et al.  The anatomy of visual neglect. , 2003, Brain : a journal of neurology.

[90]  M. Corbetta,et al.  Quantitative analysis of attention and detection signals during visual search. , 2003, Journal of neurophysiology.

[91]  G. Pagnoni,et al.  Human Striatal Response to Salient Nonrewarding Stimuli , 2003, The Journal of Neuroscience.

[92]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[93]  T. Allison,et al.  Brain Activity Evoked by the Perception of Human Walking: Controlling for Meaningful Coherent Motion , 2003, The Journal of Neuroscience.

[94]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[95]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[96]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[97]  L. Chelazzi,et al.  Associative knowledge controls deployment of visual selective attention , 2003, Nature Neuroscience.

[98]  P. Holcomb,et al.  Frontal and Parietal Components of a Cerebral Network Mediating Voluntary Attention to Novel Events , 2003, Journal of Cognitive Neuroscience.

[99]  C. Frith,et al.  Functional imaging of ‘theory of mind’ , 2003, Trends in Cognitive Sciences.

[100]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[101]  Chris Rorden,et al.  Non-spatially lateralized mechanisms in hemispatial neglect , 2003, Nature Reviews Neuroscience.

[102]  Luciano Fadiga,et al.  Hand action preparation influences the responses to hand pictures , 2002, Neuropsychologia.

[103]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Ravi S. Menon,et al.  Human fMRI evidence for the neural correlates of preparatory set , 2002, Nature Neuroscience.

[105]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[106]  Leslie G. Ungerleider,et al.  Neural Correlates of Visual Working Memory fMRI Amplitude Predicts Task Performance , 2002, Neuron.

[107]  M. Husain,et al.  Control of Visuotemporal Attention by Inferior Parietal and Superior Temporal Cortex , 2002, Current Biology.

[108]  Maurizio Corbetta,et al.  Reactivation of networks involved in preparatory states. , 2002, Cerebral cortex.

[109]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[110]  K. A. Hadland,et al.  Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. , 2002, Journal of neurophysiology.

[111]  M. Corbetta,et al.  Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory , 2002, Journal of Cognitive Neuroscience.

[112]  P. Skudlarski,et al.  Detection of functional connectivity using temporal correlations in MR images , 2002, Human brain mapping.

[113]  E. Macaluso,et al.  Supramodal Effects of Covert Spatial Orienting Triggered by Visual or Tactile Events , 2002, Journal of Cognitive Neuroscience.

[114]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[115]  S. Pollmann,et al.  Covert Reorienting and Inhibition of Return: An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[116]  J. Downar,et al.  The Effect of Task Relevance on the Cortical Response to Changes in Visual and Auditory Stimuli: An Event-Related fMRI Study , 2001, NeuroImage.

[117]  H. Pashler,et al.  Spontaneous allocation of visual attention: Dominant role of uniqueness , 2001, Psychonomic bulletin & review.

[118]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[119]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[120]  N. Smyrnis,et al.  Frontal-parietal activation differences observed before the execution of remembered saccades: an event-related potentials study. , 2001, Brain research. Cognitive brain research.

[121]  Michael S. Beauchamp,et al.  A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention , 2001, NeuroImage.

[122]  Ian H. Robertson,et al.  Do We Need the “Lateral” in Unilateral Neglect? Spatially Nonselective Attention Deficits in Unilateral Neglect and Their Implications for Rehabilitation , 2001, NeuroImage.

[123]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[124]  K. Zilles,et al.  Mind Reading: Neural Mechanisms of Theory of Mind and Self-Perspective , 2001, NeuroImage.

[125]  Matthew F. S. Rushworth,et al.  Attention systems and the organization of the human parietal cortex , 2001, NeuroImage.

[126]  R. D. Gordon,et al.  Executive control of visual attention in dual-task situations. , 2001, Psychological review.

[127]  B. Mazoyer,et al.  Cortical networks for working memory and executive functions sustain the conscious resting state in man , 2001, Brain Research Bulletin.

[128]  Michael Tomasello,et al.  The ontogeny of gaze following in chimpanzees, Pan troglodytes, and rhesus macaques, Macaca mulatta , 2001, Animal Behaviour.

[129]  R. Buckner,et al.  Transient Activation during Block Transition , 2001, NeuroImage.

[130]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[131]  K. Kiehl,et al.  Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. , 2001, Psychophysiology.

[132]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[133]  Stephen M. Rao,et al.  Neural Mechanisms of Visual Attention: Object-Based Selection of a Region in Space , 2000, Journal of Cognitive Neuroscience.

[134]  P. Downing,et al.  Interactions Between Visual Working Memory and Selective Attention , 2000, Psychological science.

[135]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[136]  M. D’Esposito,et al.  Modulation of task-related neural activity in task-switching: an fMRI study. , 2000, Brain research. Cognitive brain research.

[137]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[138]  M. Mesulam,et al.  The central role of the prefrontal cortex in directing attention to novel events. , 2000, Brain : a journal of neurology.

[139]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[140]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[141]  J. Gore,et al.  A Stimulus-Driven Approach to Object Identity and Location Processing in the Human Brain , 2000, Neuron.

[142]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[143]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[144]  B. Hommel The prepared reflex: Automaticity and control in stimulus-response translation , 2000 .

[145]  M. Mesulam Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[146]  R. Goebel,et al.  The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. , 1999, Cerebral cortex.

[147]  Avishai Henik,et al.  Inhibition of return in spatial attention: direct evidence for collicular generation , 1999, Nature Neuroscience.

[148]  D. Gitelman,et al.  Neuroanatomic Overlap of Working Memory and Spatial Attention Networks: A Functional MRI Comparison within Subjects , 1999, NeuroImage.

[149]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[150]  S. Yantis,et al.  On the distinction between visual salience and stimulus-driven attentional capture. , 1999, Journal of experimental psychology. Human perception and performance.

[151]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[152]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[153]  A. Nobre,et al.  The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry , 1999, NeuroImage.

[154]  Stephen M. Rao,et al.  Neural Basis of Endogenous and Exogenous Spatial Orienting: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[155]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[156]  G Humphreys,et al.  Systematic analysis of deficits in visual attention. , 1999, Journal of experimental psychology. General.

[157]  J. A. Frost,et al.  Conceptual Processing during the Conscious Resting State: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[158]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[159]  J. Mattingley,et al.  Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness , 1998, Nature.

[160]  C. Spence,et al.  Cross-modal links in spatial attention. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[161]  R. Ivry,et al.  Response Channel Activation and the Temporoparietal Junction , 1998, Brain and Cognition.

[162]  Bradley S. Gibson,et al.  Stimulus-Driven Attentional Capture Is Contingent on Attentional Set for Displaywide Visual Features , 1998 .

[163]  B. Gibson,et al.  Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. , 1998, Journal of experimental psychology. Human perception and performance.

[164]  J. Theeuwes,et al.  Attentional control during visual search: the effect of irrelevant singletons. , 1998, Journal of experimental psychology. Human perception and performance.

[165]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[166]  J. Ford,et al.  Combined event‐related fMRI and EEG evidence for temporal—parietal cortex activation during target detection , 1997, Neuroreport.

[167]  G. Aston-Jones,et al.  Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task , 1997, Neuroscience.

[168]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[169]  P. Goldman-Rakic,et al.  Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. , 1997, Journal of neurophysiology.

[170]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[171]  C. Kennard,et al.  Abnormal temporal dynamics of visual attention in spatial neglect patients , 1997, Nature.

[172]  M. Mintun,et al.  Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. , 1996, Journal of neurophysiology.

[173]  M. Moulins,et al.  Modulation and dynamic specification of motor rhythm-generating circuits in crustacea , 1995, Journal of Physiology-Paris.

[174]  Richard S. J. Frackowiak,et al.  Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension , 1995, Cognition.

[175]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[176]  R. Knight,et al.  Human prefrontal lesions increase distractibility to irrelevant sensory inputs , 1995, Neuroreport.

[177]  D. Robinson,et al.  Covert orienting of attention in macaques. II. Contributions of parietal cortex. , 1995, Journal of neurophysiology.

[178]  D L Robinson,et al.  Covert orienting of attention in macaques. III. Contributions of the superior colliculus. , 1995, Journal of neurophysiology.

[179]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[180]  G. Aston-Jones,et al.  Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance , 1994, Brain Research Bulletin.

[181]  R. Verleger,et al.  Reduction of P3b in patients with temporo-parietal lesions. , 1994, Brain research. Cognitive brain research.

[182]  H. Egeth,et al.  Overriding stimulus-driven attentional capture , 1994, Perception & psychophysics.

[183]  S J Luck,et al.  Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. , 1994, Journal of experimental psychology. Human perception and performance.

[184]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[185]  M. Moulins,et al.  Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[186]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[187]  J. C. Johnston,et al.  Involuntary covert orienting is contingent on attentional control settings. , 1992, Journal of experimental psychology. Human perception and performance.

[188]  S. Hillyard,et al.  Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. , 1991, Journal of experimental psychology. Human perception and performance.

[189]  S. Yamaguchi,et al.  Anterior and posterior association cortex contributions to the somatosensory P300 , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[190]  R. Knight,et al.  P300 generation by novel somatosensory stimuli. , 1991, Electroencephalography and clinical neurophysiology.

[191]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[192]  R. Knight,et al.  Contributions of temporal-parietal junction to the human auditory P3 , 1989, Brain Research.

[193]  S. Yantis,et al.  Uniqueness of abrupt visual onset in capturing attention , 1988, Perception & psychophysics.

[194]  M. Posner,et al.  Orienting of visual attention in progressive supranuclear palsy. , 1988, Brain : a journal of neurology.

[195]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[196]  T. Shallice,et al.  Frontal lesions and sustained attention , 1987, Neuropsychologia.

[197]  Giuseppe Vallar,et al.  The Anatomy of Spatial Neglect in Humans , 1987 .

[198]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[199]  S. Foote,et al.  Extrathalamic modulation of cortical function. , 1987, Annual review of neuroscience.

[200]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[201]  M. Posner,et al.  Components of visual orienting , 1984 .

[202]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[203]  E Donchin,et al.  A metric for thought: a comparison of P300 latency and reaction time. , 1981, Science.

[204]  J. Jonides Voluntary versus automatic control over the mind's eye's movement , 1981 .

[205]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[206]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[207]  C. Eriksen,et al.  Selective attention: Noise suppression or signal enhancement? , 1974 .

[208]  Donald E. Broadbent,et al.  Decision and stress , 1971 .

[209]  E. N. Sokolov,et al.  Perception and the Conditioned Reflex , 1965 .