Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization

Coupled Map Lattices (CML) can be interpreted as spatio-temporal fitness landscapes which may pose a dynamic optimization problem. In this paper, we analyze such dynamic fitness landscapes in terms of the landscape measures modality, ruggedness, information content and epistasis. These measures account for different aspects of problem hardness. We use an evolutionary algorithm to solve the dynamic optimization problem and study the relationship between performance criteria of the algorithm and the landscape measures. In this way we relate problem hardness to expectable performance.

[1]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[2]  K. Kaneko,et al.  Coupled map gas: structure formation and dynamics of interacting motile elements with internal dynamics , 2002, nlin/0204024.

[3]  L. Darrell Whitley,et al.  Predicting Epistasis from Mathematical Models , 1999, Evolutionary Computation.

[4]  W. Hordijk Correlation analysis of the synchronizing-CA landscape , 1997 .

[5]  Hendrik Richter Behavior of Evolutionary Algorithms in Chaotically Changing Fitness Landscapes , 2004, PPSN.

[6]  Peter F. Stadler,et al.  Amplitude Spectra of Fitness Landscapes , 1998, Adv. Complex Syst..

[7]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[8]  C. Reeves,et al.  Properties of fitness functions and search landscapes , 2001 .

[9]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[10]  U. Aickelin,et al.  Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.

[11]  Hendrik Richter,et al.  Evolutionary Optimization in Spatio-temporal Fitness Landscapes , 2006, PPSN.

[12]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[13]  Shengxiang Yang,et al.  Associative Memory Scheme for Genetic Algorithms in Dynamic Environments , 2006, EvoWorkshops.

[14]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[15]  V. Tereshko Selection and coexistence by reaction-diffusion dynamics in fitness landscapes , 1999 .

[16]  Gang Hu,et al.  Spatiotemporal periodic and chaotic patterns in a two-dimensional coupled map lattice system , 1997 .

[17]  Elena Marchiori,et al.  Applications of Evolutionary Computing: Evoworkshops 2003 , 2003 .

[18]  Hendrik Richter,et al.  A study of dynamic severity in chaotic fitness landscapes , 2005, 2005 IEEE Congress on Evolutionary Computation.

[19]  Ronald W. Morrison,et al.  Designing Evolutionary Algorithms for Dynamic Environments , 2004, Natural Computing Series.

[20]  Kunihiko Kaneko,et al.  Theory and Applications of Coupled Map Lattices , 1993 .

[21]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[22]  Michael C. Mackey,et al.  Phase transitions in networks of chaotic elements with short and long range interactions , 1995 .

[23]  R.W. Morrison,et al.  Triggered hypermutation revisited , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[25]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[26]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[27]  Y. Pesin,et al.  Some physical models of the reaction-diffusion equation, and coupled map lattices , 2004 .

[28]  Wim Hordijk,et al.  Correlation analysis of coupled fitness landscapes , 2005, Complex..

[29]  Richard A. Watson,et al.  PERSPECTIVE:SIGN EPISTASIS AND GENETIC CONSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005 .

[30]  Hussein A. Abbass,et al.  Oiling the Wheels of Change: The Role of Adaptive Automatic Problem Decomposition in Non-Stationary Environments , 2005, ArXiv.

[31]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[32]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[33]  Karsten Weicker,et al.  An Analysis of Dynamic Severity and Population Size , 2000, PPSN.

[34]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[35]  M. Kendall,et al.  Rank Correlation Methods , 1949 .

[36]  Robert Kozma,et al.  Activation clustering in neural and social networks , 2005, Complex..

[37]  B. Fernandez,et al.  Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems , 2008 .

[38]  P. Stadler Landscapes and their correlation functions , 1996 .

[39]  Xin Yao,et al.  Experimental study on population-based incremental learning algorithms for dynamic optimization problems , 2005, Soft Comput..

[40]  Hussein A. Abbass,et al.  An information-theoretic landscape analysis of neuro-controlled embodied organisms , 2003, Neural Computing & Applications.

[41]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[42]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[43]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[44]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[45]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.