Remote Sensing of Earth's Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature
暂无分享,去创建一个
Larry J. Paxton | Andrew B. Christensen | D. J. Strickland | D. P. Drob | Thomas N. Woods | Daniel Morrison | Andrew W. Stephan | J. M. Picone | Geoff Crowley | Judith L. Lean | Brian Charles Wolven | R. R. Meier | J. Lean | D. Drob | G. Crowley | J. Picone | L. Paxton | T. Woods | J. Emmert | R. Meier | H. Kil | J. T. Emmert | D. Strickland | A. Christensen | D. Morrison | B. Wolven | A. Stephan | J. Bishop | H. Kil | S. T. Gibson | J. Bishop | S. Gibson | Thomas N. Woods | Judith Lean | Geoffrey Crowley | R. R. Meier | D. J. Strickland | Andrew B. Christensen | Stephen Gibson
[1] J. Lean,et al. Attribution of interminima changes in the global thermosphere and ionosphere , 2014 .
[2] Qian Wu,et al. Journal of Geophysical Research: Space Physics Quasi Two Day Wave-related Variability in the Background Dynamics and Composition of the Mesosphere/ Thermosphere and the Ionosphere , 2022 .
[3] Stanley C. Solomon,et al. The anomalous ionosphere between solar cycles 23 and 24 , 2013 .
[4] G. Crowley,et al. Disturbed O/N2 Ratios and their Transport to Middle and Low Latitudes , 2013 .
[5] J. Shim,et al. The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio , 2013 .
[6] Yongliang Zhang,et al. Reply to comment by D.J. Strickland et al. on “Long‐term variation in the thermosphere: TIMED/GUVI observations” , 2012 .
[7] J. Evans,et al. Comment on “Long-term variation in the thermosphere: TIMED/GUVI observations” by Y. Zhang and L. J. Paxton , 2012 .
[8] L. Paxton,et al. The origin of the nonmigrating tidal structure in the column number density ratio of atomic oxygen to molecular nitrogen , 2011 .
[9] J. Lean,et al. Ionospheric total electron content: Global and hemispheric climatology , 2011 .
[10] Yongliang Zhang,et al. Long‐term variation in the thermosphere: TIMED/GUVI observations , 2011 .
[11] J. M. Picone,et al. Global and regional trends in ionospheric total electron content , 2011 .
[12] J. Ajello,et al. UV Molecular Spectroscopy from Electron Impact for Applications to Planetary Atmospheres and Astrophysics , 2010 .
[13] R. Meier,et al. On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data , 2010 .
[14] T. Woods,et al. Anomalously low solar extreme‐ultraviolet irradiance and thermospheric density during solar minimum , 2010 .
[15] P. Johnson,et al. Lyman–Birge–Hopfield emissions from electron-impact excited N2 , 2010 .
[16] J. M. Picone,et al. Record‐low thermospheric density during the 2008 solar minimum , 2010 .
[17] J. Emmert. A long‐term data set of globally averaged thermospheric total mass density , 2009 .
[18] Gordon G. Shepherd,et al. DWM07 global empirical model of upper thermospheric storm-induced disturbance winds , 2008 .
[19] J. Picone. Influence of systematic error on least squares retrieval of upper atmospheric parameters from the ultraviolet airglow , 2008 .
[20] Anthony J. Mannucci,et al. XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models , 2008 .
[21] J. M. Picone,et al. Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects , 2008 .
[22] L. C. Herring,et al. Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor , 2007 .
[23] J. Lean,et al. Thermospheric density 2002-2004: TIMED/GUVI dayside limb observations and satellite drag , 2006 .
[24] Xiaoqing Pi,et al. The global ionospheric asymmetry in total electron content , 2005 .
[25] Larry J. Paxton,et al. First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model , 2005 .
[26] Larry J. Paxton,et al. GUVI: a hyperspectral imager for geospace , 2004, SPIE Asia-Pacific Remote Sensing.
[27] Larry J. Paxton,et al. O/N2 changes during 1–4 October 2002 storms: IMAGE SI‐13 and TIMED/GUVI observations , 2004 .
[28] J. Lean,et al. Global change in the thermosphere: Compelling evidence of a secular decrease in density , 2004 .
[29] Robert R. Meier,et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission , 2003 .
[30] C. Meng,et al. Negative ionospheric storms seen by the IMAGE FUV instrument , 2003 .
[31] D. Shemansky,et al. Electron-impact cross sections of atomic oxygen , 2003 .
[32] P. Feldman,et al. Analysis of the Astro‐1/Hopkins Ultraviolet Telescope EUV–FUV dayside nadir spectral radiance measurements , 2003 .
[33] D. Drob,et al. Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .
[34] D. Drob,et al. Similarity transformation‐based analysis of atmospheric models, data, and inverse remote sensing algorithms , 2001 .
[35] E. H. Roberts,et al. Assignment of the excess absorption underlying the Schumann–Runge bands of molecular oxygen , 2001 .
[36] W. Stahel,et al. Log-normal Distributions across the Sciences: Keys and Clues , 2001 .
[37] L. Frank,et al. Findings concerning the positions of substorm onsets with auroral images from the Polar spacecraft , 2000 .
[38] Larry J. Paxton,et al. Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission , 1999, Optics & Photonics.
[39] Larry J. Paxton,et al. Optical calibration of the Global Ultraviolet Imager (GUVI) , 1999, Optics & Photonics.
[40] R. E. Huffman,et al. Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results , 1999 .
[41] Larry J. Paxton,et al. Design and performance of the Global Ultraviolet Imager (GUVI) , 1998, Optics & Photonics.
[42] M. Rycroft. Physics of the Aurora and Airglow , 1997 .
[43] D. Strickland,et al. New Survey of Electron Impact Cross Sections for Photoelectron and Auroral Electron Energy Loss Calculations , 1997 .
[44] S. Gibson,et al. Understanding diatomic photodissociation with a coupled-channel Schrödinger equation model , 1996 .
[45] Larry J. Paxton,et al. Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory , 1995 .
[46] M. Ross,et al. The global ultraviolet imager (GUVI) for the NASA TIMED mission , 1994 .
[47] Robert R. Meier,et al. Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionsphere-Mesosphere Energetics and Dynamics (TIMED) mission , 1994, Optics & Photonics.
[48] J. M. Picone,et al. Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory , 1994 .
[49] R. R. Meier,et al. Ultraviolet spectroscopy and remote sensing of the upper atmosphere , 1991 .
[50] J. Samson,et al. Production of N+∗ from N2 + hv: Effective EUV emission yields from laboratory and dayglow data , 1991 .
[51] S. Solomon,et al. The 630 nm dayglow , 1989 .
[52] T. Killeen,et al. Processes responsible for the compositional structure of the thermosphere , 1989 .
[53] J. D. Craven,et al. Imaging results from Dynamics Explorer 1 , 1988 .
[54] D. Shemansky,et al. A reexamination of important N2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield Band System and N I (119.99 nm) , 1985 .
[55] P. Richards,et al. The altitude variation of the ionospheric photoelectron flux: a comparison of theory and measurement , 1985 .
[56] H. Gies,et al. Temperature dependence in the Schumann-Runge photoabsorption continuum of oxygen , 1983 .
[57] R. Daniell,et al. Dependence of auroral middle UV emissions on the incident electron spectrum and neutral atmosphere , 1983 .
[58] Robert R. Meier,et al. Determination of atmospheric composition and temperature from the u.v. airglow , 1983 .
[59] A. Chutjian,et al. Electron scattering by molecules II. Experimental methods and data , 1983 .
[60] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[61] R. R. Meier,et al. An analysis of the OI 1304 a dayglow using a Monte Carlo resonant scattering model with partial frequency redistribution , 1982 .
[62] R. R. Conway. Self‐absorption of the N2 Lyman‐Birge‐Hopfield bands in the far ultraviolet dayglow , 1982 .
[63] D. C. Cartwright,et al. Electron impact excitation of the electronic states of N 2 . I. Differential cross sections at incident energies from 10 to 50 eV , 1977 .
[64] D. C. Cartwright,et al. Electron impact excitation of the electronic states of N2. I - Differential cross sections at incident energies from 10 to 50 eV. II - Integral cross sections at incident energies from 10 to 50 eV , 1977 .
[65] George R. Carruthers,et al. Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow , 1976 .
[66] E. Stone,et al. Electron-impact excitation of the ³S° and ⁵S° states of atomic oxygen , 1974 .
[67] JAMES C. G. Walker,et al. Analytic Representation of Upper Atmosphere Densities Based on Jacchia's Static Diffusion Models , 1965 .
[68] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[69] Herman Feshbach,et al. Physics of the Aurora and Air Glow , 1962 .
[70] H. Friedman,et al. Dissociation of Oxygen in the Upper Atmosphere , 1955 .
[71] N. H. Heck. The Fifthieth Year of the Journal , 1945 .
[72] G. Crowley,et al. Quiet‐time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow , 2004 .
[73] S. Gibson,et al. A new model for the Schumann-Runge bands of O 2 , 2001 .
[74] G. Parks,et al. Auroral Observations from the POLAR Ultraviolet Imager (UVI) , 1998 .
[75] W.K. (Bill) Peterson,et al. Geospace mass and energy flow : results from the International Solar-Terrestrial Physics Program , 1998 .
[76] A. Kingston,et al. Electron Impact Excitation , 1989 .
[77] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[78] A. Tarantola,et al. Inverse problems = Quest for information , 1982 .
[79] J. Lean,et al. The effect of temperature on thermospheric molecular oxygen absorption in the Schumann‐Runge Continuum , 1981 .