Remote Sensing of Earth's Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature

The Global Ultraviolet Imager (GUVI) onboard the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite senses far ultraviolet emissions from O and N2 in the thermosphere. Transformation of far ultraviolet radiances measured on the Earth limb into O, N2, and O2 number densities and temperature quantifies these responses and demonstrates the value of simultaneous altitude and geographic information. Composition and temperature variations are available from 2002 to 2007. This paper documents the extraction of these data products from the limb emission rates. We present the characteristics of the GUVI limb observations, retrievals of thermospheric neutral composition and temperature from the forward model, and the dramatic changes of the thermosphere with the solar cycle and geomagnetic activity. We examine the solar extreme ultraviolet (EUV) irradiance magnitude and trends through comparison with simultaneous Solar Extreme EUV (SEE) measurements on TIMED and find the EUV irradiance inferred from GUVI averaged (2002–2007) 30% lower magnitude than SEE version 11 and varied less with solar activity. The smaller GUVI variability is not consistent with the view that lower solar EUV radiation during the past solar minimum is the cause of historically low thermospheric mass densities. Thermospheric O and N2 densities are lower than the NRLMSISE‐00 model, but O2 is consistent. We list some lessons learned from the GUVI program along with several unresolved issues.

[1]  J. Lean,et al.  Attribution of interminima changes in the global thermosphere and ionosphere , 2014 .

[2]  Qian Wu,et al.  Journal of Geophysical Research: Space Physics Quasi Two Day Wave-related Variability in the Background Dynamics and Composition of the Mesosphere/ Thermosphere and the Ionosphere , 2022 .

[3]  Stanley C. Solomon,et al.  The anomalous ionosphere between solar cycles 23 and 24 , 2013 .

[4]  G. Crowley,et al.  Disturbed O/N2 Ratios and their Transport to Middle and Low Latitudes , 2013 .

[5]  J. Shim,et al.  The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio , 2013 .

[6]  Yongliang Zhang,et al.  Reply to comment by D.J. Strickland et al. on “Long‐term variation in the thermosphere: TIMED/GUVI observations” , 2012 .

[7]  J. Evans,et al.  Comment on “Long-term variation in the thermosphere: TIMED/GUVI observations” by Y. Zhang and L. J. Paxton , 2012 .

[8]  L. Paxton,et al.  The origin of the nonmigrating tidal structure in the column number density ratio of atomic oxygen to molecular nitrogen , 2011 .

[9]  J. Lean,et al.  Ionospheric total electron content: Global and hemispheric climatology , 2011 .

[10]  Yongliang Zhang,et al.  Long‐term variation in the thermosphere: TIMED/GUVI observations , 2011 .

[11]  J. M. Picone,et al.  Global and regional trends in ionospheric total electron content , 2011 .

[12]  J. Ajello,et al.  UV Molecular Spectroscopy from Electron Impact for Applications to Planetary Atmospheres and Astrophysics , 2010 .

[13]  R. Meier,et al.  On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data , 2010 .

[14]  T. Woods,et al.  Anomalously low solar extreme‐ultraviolet irradiance and thermospheric density during solar minimum , 2010 .

[15]  P. Johnson,et al.  Lyman–Birge–Hopfield emissions from electron-impact excited N2 , 2010 .

[16]  J. M. Picone,et al.  Record‐low thermospheric density during the 2008 solar minimum , 2010 .

[17]  J. Emmert A long‐term data set of globally averaged thermospheric total mass density , 2009 .

[18]  Gordon G. Shepherd,et al.  DWM07 global empirical model of upper thermospheric storm-induced disturbance winds , 2008 .

[19]  J. Picone Influence of systematic error on least squares retrieval of upper atmospheric parameters from the ultraviolet airglow , 2008 .

[20]  Anthony J. Mannucci,et al.  XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models , 2008 .

[21]  J. M. Picone,et al.  Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects , 2008 .

[22]  L. C. Herring,et al.  Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor , 2007 .

[23]  J. Lean,et al.  Thermospheric density 2002-2004: TIMED/GUVI dayside limb observations and satellite drag , 2006 .

[24]  Xiaoqing Pi,et al.  The global ionospheric asymmetry in total electron content , 2005 .

[25]  Larry J. Paxton,et al.  First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model , 2005 .

[26]  Larry J. Paxton,et al.  GUVI: a hyperspectral imager for geospace , 2004, SPIE Asia-Pacific Remote Sensing.

[27]  Larry J. Paxton,et al.  O/N2 changes during 1–4 October 2002 storms: IMAGE SI‐13 and TIMED/GUVI observations , 2004 .

[28]  J. Lean,et al.  Global change in the thermosphere: Compelling evidence of a secular decrease in density , 2004 .

[29]  Robert R. Meier,et al.  Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission , 2003 .

[30]  C. Meng,et al.  Negative ionospheric storms seen by the IMAGE FUV instrument , 2003 .

[31]  D. Shemansky,et al.  Electron-impact cross sections of atomic oxygen , 2003 .

[32]  P. Feldman,et al.  Analysis of the Astro‐1/Hopkins Ultraviolet Telescope EUV–FUV dayside nadir spectral radiance measurements , 2003 .

[33]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[34]  D. Drob,et al.  Similarity transformation‐based analysis of atmospheric models, data, and inverse remote sensing algorithms , 2001 .

[35]  E. H. Roberts,et al.  Assignment of the excess absorption underlying the Schumann–Runge bands of molecular oxygen , 2001 .

[36]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[37]  L. Frank,et al.  Findings concerning the positions of substorm onsets with auroral images from the Polar spacecraft , 2000 .

[38]  Larry J. Paxton,et al.  Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission , 1999, Optics & Photonics.

[39]  Larry J. Paxton,et al.  Optical calibration of the Global Ultraviolet Imager (GUVI) , 1999, Optics & Photonics.

[40]  R. E. Huffman,et al.  Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results , 1999 .

[41]  Larry J. Paxton,et al.  Design and performance of the Global Ultraviolet Imager (GUVI) , 1998, Optics & Photonics.

[42]  M. Rycroft Physics of the Aurora and Airglow , 1997 .

[43]  D. Strickland,et al.  New Survey of Electron Impact Cross Sections for Photoelectron and Auroral Electron Energy Loss Calculations , 1997 .

[44]  S. Gibson,et al.  Understanding diatomic photodissociation with a coupled-channel Schrödinger equation model , 1996 .

[45]  Larry J. Paxton,et al.  Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory , 1995 .

[46]  M. Ross,et al.  The global ultraviolet imager (GUVI) for the NASA TIMED mission , 1994 .

[47]  Robert R. Meier,et al.  Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionsphere-Mesosphere Energetics and Dynamics (TIMED) mission , 1994, Optics & Photonics.

[48]  J. M. Picone,et al.  Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory , 1994 .

[49]  R. R. Meier,et al.  Ultraviolet spectroscopy and remote sensing of the upper atmosphere , 1991 .

[50]  J. Samson,et al.  Production of N+∗ from N2 + hv: Effective EUV emission yields from laboratory and dayglow data , 1991 .

[51]  S. Solomon,et al.  The 630 nm dayglow , 1989 .

[52]  T. Killeen,et al.  Processes responsible for the compositional structure of the thermosphere , 1989 .

[53]  J. D. Craven,et al.  Imaging results from Dynamics Explorer 1 , 1988 .

[54]  D. Shemansky,et al.  A reexamination of important N2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield Band System and N I (119.99 nm) , 1985 .

[55]  P. Richards,et al.  The altitude variation of the ionospheric photoelectron flux: a comparison of theory and measurement , 1985 .

[56]  H. Gies,et al.  Temperature dependence in the Schumann-Runge photoabsorption continuum of oxygen , 1983 .

[57]  R. Daniell,et al.  Dependence of auroral middle UV emissions on the incident electron spectrum and neutral atmosphere , 1983 .

[58]  Robert R. Meier,et al.  Determination of atmospheric composition and temperature from the u.v. airglow , 1983 .

[59]  A. Chutjian,et al.  Electron scattering by molecules II. Experimental methods and data , 1983 .

[60]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[61]  R. R. Meier,et al.  An analysis of the OI 1304 a dayglow using a Monte Carlo resonant scattering model with partial frequency redistribution , 1982 .

[62]  R. R. Conway Self‐absorption of the N2 Lyman‐Birge‐Hopfield bands in the far ultraviolet dayglow , 1982 .

[63]  D. C. Cartwright,et al.  Electron impact excitation of the electronic states of N 2 . I. Differential cross sections at incident energies from 10 to 50 eV , 1977 .

[64]  D. C. Cartwright,et al.  Electron impact excitation of the electronic states of N2. I - Differential cross sections at incident energies from 10 to 50 eV. II - Integral cross sections at incident energies from 10 to 50 eV , 1977 .

[65]  George R. Carruthers,et al.  Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow , 1976 .

[66]  E. Stone,et al.  Electron-impact excitation of the ³S° and ⁵S° states of atomic oxygen , 1974 .

[67]  JAMES C. G. Walker,et al.  Analytic Representation of Upper Atmosphere Densities Based on Jacchia's Static Diffusion Models , 1965 .

[68]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[69]  Herman Feshbach,et al.  Physics of the Aurora and Air Glow , 1962 .

[70]  H. Friedman,et al.  Dissociation of Oxygen in the Upper Atmosphere , 1955 .

[71]  N. H. Heck The Fifthieth Year of the Journal , 1945 .

[72]  G. Crowley,et al.  Quiet‐time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow , 2004 .

[73]  S. Gibson,et al.  A new model for the Schumann-Runge bands of O 2 , 2001 .

[74]  G. Parks,et al.  Auroral Observations from the POLAR Ultraviolet Imager (UVI) , 1998 .

[75]  W.K. (Bill) Peterson,et al.  Geospace mass and energy flow : results from the International Solar-Terrestrial Physics Program , 1998 .

[76]  A. Kingston,et al.  Electron Impact Excitation , 1989 .

[77]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[78]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[79]  J. Lean,et al.  The effect of temperature on thermospheric molecular oxygen absorption in the Schumann‐Runge Continuum , 1981 .