Stochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach

We prove well-posedness results for stochastic nonlinear Schrödinger equations with linear multiplicative Wiener noise, including the nonconservative case. Our approach is different from the standard literature on stochastic nonlinear Schrödinger equations. By a rescaling transformation we reduce the stochastic equation to a random nonlinear Schrödinger equation with lower-order terms and treat the resulting equation by a fixed point argument based on generalizations of Strichartz estimates proved by Marzuola et al. (J Funct Anal 255(6):1479–1553, 2008). This approach makes it possible to improve earlier well-posedness results obtained in the conservative case by a direct approach to the stochastic Schrödinger equation. In contrast to the latter, we obtain well-posedness in the full range $$[1, 1 + 4/d)$$[1,1+4/d) of admissible exponents in the nonlinear part (where $$d$$d is the dimension of the underlying Euclidean space), i.e., in exactly the same range as in the deterministic case.

[1]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[2]  A. Debussche,et al.  A Stochastic Nonlinear Schrödinger Equation¶with Multiplicative Noise , 1999 .

[3]  Alberto Barchielli,et al.  Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case , 2009 .

[4]  Anja Sturm,et al.  Voter models with heterozygosity selection , 2008 .

[5]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[6]  Arnaud Debussche,et al.  Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise , 2005 .

[7]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Francesco Petruccione,et al.  Stochastic Schrödinger equations with coloured noise , 2009, 0911.2554.

[9]  C. Mora,et al.  Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions , 2008, 0804.0121.

[10]  A. Debussche,et al.  The Stochastic Nonlinear Schrödinger Equation in H 1 , 2003 .

[11]  W. Kendall,et al.  Zeros of Brownian polynomials , 2000 .

[12]  Wilfried Grecksch,et al.  Stochastic Nonlinear Equations of Schrödinger Type , 2011 .

[13]  S. Doi Remarks on the cauchy problem for schrödinger-type equations , 1996 .

[14]  Michael Röckner,et al.  On a random scaled porous media equation , 2011 .

[15]  V. Barbu,et al.  Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise , 2012, 1209.0351.

[16]  S. Doi On the Cauchy problem for Schrödinger type equations and the regularity of the solutions , 1994 .

[17]  E. S. Noussair,et al.  Differential equations in Banach spaces , 1973, Bulletin of the Australian Mathematical Society.

[18]  Tosio Kato,et al.  On nonlinear Schrödinger equations , 1987 .

[19]  Sufficient Conditions for Conservativity of Minimal Quantum Dynamical Semigroups , 1997, funct-an/9711006.

[20]  D. Tataru,et al.  Strichartz estimates and local smoothing estimates for asymptotically flat Schr , 2007, 0706.0544.

[21]  S. Krein,et al.  Linear Differential Equations in Banach Space , 1972 .