Nonlinear stabilization of tokamak microturbulence by fast ions.

Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107, 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.

[1]  M Barnes,et al.  Zero-turbulence manifold in a toroidal plasma. , 2012, Physical review letters.

[2]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[3]  J. Citrin,et al.  Impact of heating and current drive mix on the ITER hybrid scenario , 2010 .

[4]  F. Imbeaux,et al.  Simulation of the neutral beam deposition within integrated tokamak modelling frameworks , 2011 .

[5]  D. McCune,et al.  Thermal ions dilution and ITG suppression in ASDEX Upgrade ion ITBs , 2007 .

[6]  Frank Jenko,et al.  Gyrokinetic turbulence simulations at high plasma beta , 2008 .

[7]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[8]  N Hawkes,et al.  A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear. , 2011, Physical review letters.

[9]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[10]  T. Tala,et al.  Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak. , 2009, Physical review letters.

[11]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[12]  F. Jenko,et al.  Transport properties of finite-β microturbulence , 2010 .

[13]  Torbjörn Hellsten,et al.  The influence of finite drift orbit width on ICRF heating in toroidal plasmas , 2002 .

[14]  R. Waltz,et al.  Simultaneous analysis of ion and electron heat transport by power modulation in JET , 2011 .

[15]  C. Giroud,et al.  Improved confinement in JET hybrid discharges , 2012 .

[16]  X. Litaudon,et al.  Impact of the α parameter on the microstability of internal transport barriers , 2005 .

[17]  F. Romanelli Ion temperature-gradient-driven modes and anomalous ion transport in tokamaks , 1989 .

[18]  J. Connor,et al.  Generation of zonal perturbations and transport barriers in plasmas , 2011 .

[19]  W. Horton,et al.  Electromagnetic effect on the toroidal ion temperature gradient mode , 1993 .

[20]  Laurent Villard,et al.  Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence , 2009 .

[21]  F Jenko,et al.  System size effects on gyrokinetic turbulence. , 2010, Physical review letters.

[22]  T. L. Rhodes,et al.  Progress in GYRO validation studies of DIII-D H-mode plasmas , 2012 .

[23]  J. Kinsey,et al.  Nonlinear gyrokinetic turbulence simulations of E × B shear quenching of transport , 2005 .

[24]  F. Jenko,et al.  On secondary and tertiary instability in electromagnetic plasma microturbulence , 2013 .

[25]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[26]  A. Murari,et al.  Chapter 5: Burning Plasma Studies at JET , 2008 .

[27]  Jeff M. Candy,et al.  The local limit of global gyrokinetic simulations , 2004 .

[28]  J. Contributors,et al.  Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation , 2010 .

[29]  R. Budny,et al.  The ‘hybrid’ scenario in JET: towards its validation for ITER , 2005 .

[30]  T. L. Rhodes,et al.  Advances in validating gyrokinetic turbulence models against L- and H-mode plasmas a) , 2011 .