Regional mechanical properties of passive myocardium.

[1]  J. Humphrey,et al.  A constitutive theory for biomembranes: application to epicardial mechanics. , 1992, Journal of biomechanical engineering.

[2]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[3]  A. McCulloch,et al.  Passive material properties of intact ventricular myocardium determined from a cylindrical model. , 1991, Journal of biomechanical engineering.

[4]  J. Humphrey,et al.  An improved video-based computer tracking systems for soft biomaterials testing , 1990, IEEE Transactions on Biomedical Engineering.

[5]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: I. A new functional form. , 1990, Journal of biomechanical engineering.

[6]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: II. Parameter estimation. , 1990, Journal of biomechanical engineering.

[7]  Y C Fung,et al.  Residual strain in rat left ventricle. , 1990, Circulation research.

[8]  J D Humphrey,et al.  Constitutive Relations and Finite Deformations of Passive Cardiac Tissue II: Stress Analysis in the Left Ventricle , 1989, Circulation research.

[9]  J D Humphrey,et al.  Biomechanical experiments on excised myocardium: theoretical considerations. , 1989, Journal of biomechanics.

[10]  J D Humphrey,et al.  Biaxial mechanical behavior of excised epicardium. , 1988, Journal of biomechanical engineering.

[11]  L. Waldman,et al.  Technique for Measuring Regional Two‐Dimensional Finite Strains in Canine Left Ventricle , 1988, Circulation research.

[12]  R. Kloner,et al.  Effect of myocyte necrosis on strength, strain, and stiffness of isolated myocardial strips. , 1987, American heart journal.

[13]  S L Zeger,et al.  Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. , 1987, Journal of biomechanics.

[14]  W. Lew,et al.  Regional Comparison of Midwall Segment and Area Shortening in the Canine Left Ventricle , 1986, Circulation research.

[15]  Y. Fung,et al.  Transmural Myocardial Deformation in the Canine Left Ventricle: Normal in Vivo Three‐Dimensional Finite Strains , 1985, Circulation research.

[16]  F. Yin,et al.  Passive biaxial mechanical properties of isolated canine myocardium. , 1983, The Journal of physiology.

[17]  F. Yin,et al.  Ventricular wall stress. , 1981, Circulation research.

[18]  T. F. Moriarty,et al.  The Law of Laplace: Its Limitations as a Relation for Diastolic Pressure, Volume, or Wall Stress of the Left Ventricle , 1980, Circulation research.

[19]  R. Anderson,et al.  Regional diastolic mechanics of the left ventricle in the conscious dog. , 1979, The American journal of physiology.

[20]  J. Covell,et al.  Comparison of left ventricular free wall and septal diastolic compliance in the dog. , 1978, The American journal of physiology.

[21]  Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. , 1976, Bulletin of mathematical biology.

[22]  A. Grimm,et al.  Deformation of the diastolic left ventricle. Nonlinear elastic effects. , 1973, Biophysical journal.

[23]  A. Grimm,et al.  Finite‐Element Model for the Mechanical Behavior of the Left Ventricle: PREDICTION OF DEFORMATION IN THE POTASSIUM-ARRESTED RAT HEART , 1972, Circulation research.

[24]  I. Mirsky,et al.  Effects of anisotropy and nonhomogeneity on left ventricular stresses in the intact heart. , 1970, The Bulletin of mathematical biophysics.

[25]  E. Sonnenblick,et al.  Response of myocardial connective tissue to development of experimental hypertrophy. , 1969, The American journal of physiology.