Strategic candidacy for multivalued voting procedures

Dutta et al. (Econometrica 69 (2001) 1013) (Dutta, Jackson, and Le Breton-DJLeB) initiate the study of manipulation of voting procedures by a candidate who withdraws from the election. A voting procedure is candidate stable if this is never possible. We extend the DJLeB framework by allowing: (a) the outcome of the procedure to be a set of candidates; (b) some or all of the voters to have weak preference orderings of the candidates. When there are at least three candidates, any strongly candidate stable voting selection satisfying a weak unanimity condition is characterized by a serial dictatorship. This result generalizes Theorem 4 of DJLeB. (C) 2003 Elsevier Inc. All rights reserved.

[1]  M. Jackson,et al.  Strategic Candidacy and Voting Procedures , 2001 .

[2]  A. Gibbard Manipulation of Schemes That Mix Voting with Chance , 1977 .

[3]  L. Gevers On Interpersonal Comparability and Social Welfare Orderings , 1979 .

[4]  Tom Armstrong,et al.  Hierarchical Arrow Social Welfare Functions , 1992 .

[5]  Biung-Ghi Ju,et al.  A characterization of strategy-proof voting rules for separable weak orderings , 2003, Soc. Choice Welf..

[6]  John A. Weymark,et al.  Social Choice with Interpersonal Utility Comparisons: A Diagrammatic Introduction , 1984 .

[7]  Bezalel Peleg,et al.  Distribution of Power under Stochastic Social Choice Rules , 1986 .

[8]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[9]  P. Reny Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified approach , 2001 .

[10]  Arunava Sen,et al.  Strategy-proof Social Choice Correspondences , 2001, J. Econ. Theory.

[11]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[12]  Salvador Barberà,et al.  Pivotal voters: A new proof of arrow's theorem , 1980 .

[13]  Andreu Mas-Colell,et al.  General Possibility Theorems for Group Decisions , 1972 .

[14]  Hervé Moulin,et al.  Scheduling with Opting Out: Improving upon Random Priority , 2001, Oper. Res..

[15]  John A. Weymark,et al.  Candidate stability and nonbinary social choice , 2001 .

[16]  Lin Zhou,et al.  Multi-valued strategy-proof social choice rules , 2002, Soc. Choice Welf..

[17]  Stephen Coate,et al.  An Economic Model of Representative Democracy , 1997 .

[18]  Salvador Barberà,et al.  Voting by Committees , 1991 .

[19]  Biung-Ghi Ju,et al.  A characterization of plurality-like rules based on non-manipulability, restricted efficiency, and anonymity , 2005, Int. J. Game Theory.

[20]  Carmelo Rodríguez-Álvarez Candidate Stability and Voting Correspondences , 2006, Soc. Choice Welf..

[21]  Mamoru Kaneko,et al.  On interpersonal utility comparisons , 1984 .

[22]  Eiichi Miyagawa,et al.  Locating libraries on a street , 2001, Soc. Choice Welf..

[23]  Jerry S. Kelly,et al.  STRATEGY-PROOFNESS AND SOCIAL CHOICE FUNCTIONS WITHOUT SINGLEVALUEDNESS , 1977 .

[24]  A. Feldman,et al.  Strongly nonmanipulable multi-valued collective choice rules , 1980 .

[25]  John Duggan,et al.  Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..

[26]  Fouad T. Aleskerov,et al.  Hierarchical voting , 1986, Inf. Sci..

[27]  Charles R. Plott,et al.  Nonbinary Social Choice: An Impossibility Theorem , 1982 .

[28]  Carmelo Rodríguez Álvarez Candidate Stability and Probabilistic Voting Procedures , 2002 .

[29]  Jean-Pierre Benoît,et al.  Strategic Manipulation in Voting Games When Lotteries and Ties Are Permitted , 2002, J. Econ. Theory.

[30]  Carmelo Rodr uez- varez Candidate Stability and Voting Correspondences , 2001 .

[31]  Andrew McLennan,et al.  Ordinal Efficiency and the Polyhedral Separating Hyperplane Theorem , 2002, J. Econ. Theory.

[32]  Carmelo Rodríguez-Álvarez Candidate stability and probabilistic voting procedures , 2003 .

[33]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[34]  Salvador Barberà,et al.  THE MANIPULATION OF SOCIAL CHOICE MECHANISMS THAT DO NOT LEAVE "TOO MUCH" TO CHANCE' , 1977 .

[35]  A. Feldman,et al.  Nonmanipulable multi-valued social decision functions , 1979 .

[36]  Robert B. Wilson,et al.  Social choice theory without the Pareto Principle , 1972 .

[37]  J. Laffont Aggregation and revelation of preferences , 1979 .

[38]  Hugo Sonnenschein,et al.  Voting By Quota And Committee , 1988 .

[39]  Allan M. Feldman Manipulation and the Pareto rule , 1979 .