SystemML: Declarative Machine Learning on Spark
暂无分享,去创建一个
Shirish Tatikonda | Frederick Reiss | Berthold Reinwald | Alexandre V. Evfimievski | Michael W. Dusenberry | Matthias Boehm | Prithviraj Sen | Niketan Pansare | Faraz Makari Manshadi | Michael Dusenberry | Deron Eriksson | Arvind Surve | B. Reinwald | S. Tatikonda | Matthias Boehm | Frederick Reiss | Niketan Pansare | A. Evfimievski | P. Sen | F. Manshadi | D. Eriksson | Arvind Surve | Prithviraj Sen
[1] Dennis M. Wilkinson,et al. Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.
[2] Shivnath Babu,et al. Cumulon: optimizing statistical data analysis in the cloud , 2013, SIGMOD '13.
[3] Tim Kraska,et al. MLI: An API for Distributed Machine Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.
[4] Berthold Reinwald,et al. Declarative Machine Learning - A Classification of Basic Properties and Types , 2016, ArXiv.
[5] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[6] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[7] Kunle Olukotun,et al. OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning , 2011, ICML.
[8] Volker Markl,et al. Implicit Parallelism through Deep Language Embedding , 2016, SGMD.
[9] Shirish Tatikonda,et al. SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[10] Carsten Binnig,et al. An Architecture for Compiling UDF-centric Workflows , 2015, Proc. VLDB Endow..
[11] Shirish Tatikonda,et al. SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs , 2014, IEEE Data Eng. Bull..
[12] Gunnar Rätsch,et al. The SHOGUN Machine Learning Toolbox , 2010, J. Mach. Learn. Res..
[13] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[14] Michael Stonebraker,et al. The Architecture of SciDB , 2011, SSDBM.
[15] Matei Zaharia,et al. linalg: Matrix Computations in Apache Spark , 2015, ArXiv.
[16] Bin Cui,et al. Exploiting Matrix Dependency for Efficient Distributed Matrix Computation , 2015, SIGMOD Conference.
[17] Shirish Tatikonda,et al. Resource Elasticity for Large-Scale Machine Learning , 2015, SIGMOD Conference.
[18] Joseph M. Hellerstein,et al. Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..
[19] Carlo Curino,et al. REEF: Retainable Evaluator Execution Framework , 2013, Proc. VLDB Endow..
[20] Christopher Ré,et al. Materialization optimizations for feature selection workloads , 2014, SIGMOD Conference.
[21] Carlo Curino,et al. Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.
[22] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[23] Alvin AuYoung,et al. Presto: distributed machine learning and graph processing with sparse matrices , 2013, EuroSys '13.
[24] Chao Liu,et al. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce , 2010, WWW '10.
[25] Shirish Tatikonda,et al. Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML , 2014, Proc. VLDB Endow..
[26] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[27] Shirish Tatikonda,et al. On optimizing machine learning workloads via kernel fusion , 2015, PPoPP.
[28] Tim Kraska,et al. MLbase: A Distributed Machine-learning System , 2013, CIDR.
[29] Peter J. Haas,et al. Simulation of database-valued markov chains using SimSQL , 2013, SIGMOD '13.
[30] William B. March,et al. MLPACK: a scalable C++ machine learning library , 2012, J. Mach. Learn. Res..
[31] Tim Kraska,et al. Automating model search for large scale machine learning , 2015, SoCC.
[32] Shirish Tatikonda,et al. Scalable and Numerically Stable Descriptive Statistics in SystemML , 2012, 2012 IEEE 28th International Conference on Data Engineering.