A Generic Approach to Parameter Control

On-line control of EA parameters is an approach to parameter setting that offers the advantage of values changing during the run. In this paper, we investigate parameter control from a generic and parameter-independent perspective. We propose a generic control mechanism that is targeted to repetitive applications, can be applied to any numeric parameter and is tailored to specific types of problems through an off-line calibration process. We present proof-of-concept experiments using this mechanism to control the mutation step size of an Evolutionary Strategy (ES). Results show that our method is viable and performs very well, compared to the tuning approach and traditional control methods.

[1]  A. E. Eiben,et al.  Costs and Benefits of Tuning Parameters of Evolutionary Algorithms , 2008, PPSN.

[2]  N. Schraudolph,et al.  Dynamic Parameter Encoding for Genetic Algorithms , 1992, Machine Learning.

[3]  Robert E. Smith,et al.  Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..

[4]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[5]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[6]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[7]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[8]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[9]  A. E. Eiben,et al.  An algorithm for distributed on-line, on-board evolutionary robotics , 2011, GECCO '11.

[10]  A. E. Eiben,et al.  Multi-Problem Parameter Tuning using BONESA , 2011 .

[11]  Kenneth DeJong,et al.  Parameter Setting in EAs: a 30 Year Perspective , 2007, Parameter Setting in Evolutionary Algorithms.

[12]  A. E. Eiben,et al.  Parameter Control Methods for Selection Operators in Genetic Algorithms , 2008, PPSN.

[13]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[14]  M. Majig,et al.  Adaptive Fitness Function for Evolutionary Algorithm and Its Applications , 2008, International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008).

[15]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[16]  Frédéric Saubion,et al.  On the Design of Adaptive Control Strategies for Evolutionary Algorithms , 2007, Artificial Evolution.

[17]  A. E. Eiben,et al.  Population diversity index: a new measure for population diversity , 2011, GECCO.

[18]  Tamás D. Gedeon,et al.  Rainfall prediction model using soft computing technique , 2003, Soft Comput..

[19]  Frédéric Saubion,et al.  From Adaptive to More Dynamic Control in Evolutionary Algorithms , 2011, EvoCOP.

[20]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[21]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[22]  Kwong-Sak Leung,et al.  A novel approach in parameter adaptation and diversity maintenance for genetic algorithms , 2003, Soft Comput..