The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method

The Linear Complementarity Problem (LCP), with an H+−matrix coefficient, is solved by using the new “(Projected) Matrix Analogue of the AOR (MAAOR)” iterative method; this new method constitutes an extension of the “Generalized AOR (GAOR)” iterative method. In this work two sets of convergence intervals of the parameters involved are determined by the theories of “Perron-Frobenius” and of “Regular Splittings”. It is shown that the intervals in question are better than any similar convergence intervals found so far by similar iterative methods. A deeper analysis reveals that the “best” values of the parameters involved are those of the (projected) scalar Gauss-Seidel iterative method. A theoretical comparison of the “best” (projected) Gauss-Seidel and the “best” modulus-based splitting Gauss-Seidel method is in favor of the former method. A number of numerical examples support most of our theoretical findings.

[1]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[2]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[3]  Layne T. Watson,et al.  Iterative algorithms for the linear complementarity problem , 1986 .

[4]  R. Beauwens Factorization iterative methods,M-operators andH-operators , 1978 .

[5]  Ning Zheng,et al.  Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix , 2014, J. Comput. Appl. Math..

[6]  Ning Zheng,et al.  Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem , 2012, Numerical Algorithms.

[7]  Apostolos Hadjidimos,et al.  On the Solution of the Linear Complementarity Problem by the Generalized Accelerated Overrelaxation Iterative Method , 2015, J. Optim. Theory Appl..

[8]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[9]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[10]  V. Fridman,et al.  An iteration process for the solution of the finite-dimensional contact problem☆ , 1967 .

[11]  Li-Li Zhang,et al.  Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems , 2012, Numerical Algorithms.

[12]  H. Schneider Theorems on M-splittings of a singular M-matrix which depend on graph structure☆ , 1984 .

[13]  Yaotang Li,et al.  Generalized AOR methods for linear complementarity problem , 2007, Appl. Math. Comput..

[14]  Mei-Qun Jiang,et al.  A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..

[15]  Apostolos Hadjidimos The matrix analogue of the scalar AOR iterative method , 2015, J. Comput. Appl. Math..

[16]  Li-Li Zhang,et al.  Two-step modulus-based synchronous multisplitting iteration methods for linear complementarity problems , 2015 .

[17]  T. S. Papatheodorou,et al.  Improving projected successive overrelaxation method for linear complementarity problems , 2003 .

[18]  Li-Li Zhang,et al.  Two-step modulus-based matrix splitting iteration method for linear complementarity problems , 2011, Numerical Algorithms.

[19]  Xiao-Qing Jin,et al.  Convergence of the generalized AOR method , 1999, Appl. Math. Comput..

[20]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[21]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[22]  John K. Reid,et al.  An Implementation of Tarjan's Algorithm for the Block Triangularization of a Matrix , 1978, TOMS.

[23]  Wen Li,et al.  A general modulus-based matrix splitting method for linear complementarity problems of HH-matrices , 2013, Appl. Math. Lett..

[24]  Apostolos Hadjidimos,et al.  A New Iterative Criterion for H-Matrices , 2006, SIAM J. Matrix Anal. Appl..

[25]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[26]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[27]  B. Ahn Solution of nonsymmetric linear complementarity problems by iterative methods , 1981 .

[28]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[29]  D. Christopherson,et al.  A New Mathematical Method for the Solution of Film Lubrication Problems , 1941 .

[30]  S. A. Edalatpanah,et al.  On the Convergence Regions of Generalized Accelerated Overrelaxation Method for Linear Complementarity Problems , 2013, J. Optim. Theory Appl..

[31]  John Boyd,et al.  A Solution for the Finite Journal Bearing and its Application to Analysis and Design: III , 1958 .

[32]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[33]  Daniel B. Szyld,et al.  Comparison theorems for weak splittings of bounded operators , 1990 .

[34]  Li-Li Zhang,et al.  Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems , 2013, Appl. Math. Lett..

[35]  C. Cryer The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences , 1971 .

[36]  J. Pang Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem , 1984 .

[37]  Apostolos Hadjidimos,et al.  Nonstationary Extrapolated Modulus Algorithms for the solution of the Linear Complementarity Problem , 2009 .

[38]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[39]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[40]  Apostolos Hadjidimos,et al.  On Iterative Solution for Linear Complementarity Problem with an H+-Matrix , 2012, SIAM J. Matrix Anal. Appl..

[41]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[42]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[43]  Li-Li Zhang,et al.  Modulus‐based synchronous multisplitting iteration methods for linear complementarity problems , 2013, Numer. Linear Algebra Appl..

[44]  Zhong-Zhi Bai,et al.  The convergence of parallel iteration algorithms for linear complementarity problems , 1996 .

[45]  Apostolos Hadjidimos,et al.  On the choice of parameters in MAOR type splitting methods for the linear complementarity problem , 2014, Numerical Algorithms.

[46]  Li-Li Zhang Two-Stage Multisplitting Iteration Methods Using Modulus-Based Matrix Splitting as Inner Iteration for Linear Complementarity Problems , 2014, J. Optim. Theory Appl..

[47]  Vladimir Kostic,et al.  A note on the convergence of the MSMAOR method for linear complementarity problems , 2014, Numer. Linear Algebra Appl..

[48]  A. Hadjidimos,et al.  Is A∈Cn,n a general H-matrix? , 2012 .

[49]  K. G. Murty,et al.  LINEAR COMPLEMENTARITY � LINEAR AND NONLINEAR PROGRAMMING Internet Edition , 2006 .