Testing of mixing models for Monte Carlo probability density function simulations

Testing of mixing models widely used for Monte Carlo probability density function simulations of turbulent diffusion flames is performed using the data obtained from direct numerical simulations (DNS) that are specifically designed for the study of local flame extinction and reignition. In particular, the interaction by exchange with the mean (IEM) [J. Villermaux and J. C. Devillon, “Representation de la coalescence et de la redispersion des domaines de segregation dans un fluide per modele d’interaction phenomenologique,” in Proceedings of the Second International Symposia on Chemical Reaction Engineering (ISCRE, Netherlands, 1972), p. B1], the modified Curl [J. Janicka, W. Kolbe, and W. Kollmann, J. Non-Equilib. Thermodyn. 4, 47 (1979)], and the Euclidean minimum spanning tree (EMST) [S. Subramaniam and S. B. Pope, Combust. Flame 115, 487 (1998)] mixing models are tested. The tests are designed to examine the mixing model performance when implemented in both Reynolds-averaged simulations and large-eddy ...

[1]  S. Corrsin The Decay of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[2]  S. Pope,et al.  An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence , 1988 .

[3]  Stephen B. Pope,et al.  PDF calculations of turbulent nonpremixed flames with local extinction , 2000 .

[4]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[5]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[6]  James J. Riley,et al.  Direct numerical simulation of laboratory experiments in isotropic turbulence , 1998 .

[7]  James J. Riley,et al.  Investigation of the influence of the Reynolds number on extinction and reignition , 2004 .

[8]  S. Pope,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 1998 .

[9]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[10]  R. W. Bilger,et al.  Turbulent flows with nonpremixed reactants , 1980 .

[11]  R. Lindstedt,et al.  Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry , 2000 .

[12]  C. Dopazo,et al.  An approach to the autoignition of a turbulent mixture , 1974 .

[13]  H. Pitsch,et al.  Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach , 2001 .

[14]  Amable Liñán,et al.  The asymptotic structure of counterflow diffusion flames for large activation energies , 1974 .

[15]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[16]  E. O'brien,et al.  The probability density function (pdf) approach to reacting turbulent flows , 1980 .

[17]  James J. Riley,et al.  INVESTIGATION OF CLOSURE MODELS FOR NONPREMIXED TURBULENT REACTING FLOWS , 1994 .

[18]  G. S. Patterson,et al.  Numerical simulation of turbulence , 1972 .

[19]  Zhuyin Ren,et al.  An investigation of the performance of turbulent mixing models , 2004 .

[20]  F. Williams,et al.  Turbulent Reacting Flows , 1981 .

[21]  R. Fox Computational Models for Turbulent Reacting Flows , 2003 .

[22]  N. Peters Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion , 1983 .

[23]  Stephen B. Pope,et al.  A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees , 1998 .

[24]  J. Ehlers Statistical Models and Turbulence , 1972 .

[25]  Sharath S. Girimaji,et al.  On the modeling of scalar diffusion in isotropic turbulence , 1992 .

[26]  Stephen B. Pope,et al.  Turbulent mixing model based on ordered pairing , 1991 .

[27]  S. Pope,et al.  Direct numerical simulations of the turbulent mixing of a passive scalar , 1988 .

[28]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[29]  S. Pope,et al.  Comparison of mixing model performance for nonpremixed turbulent reactive flow , 1999 .

[30]  Feng Gao,et al.  A large‐eddy simulation scheme for turbulent reacting flows , 1993 .

[31]  P. Yeung,et al.  Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations , 2001, Journal of Fluid Mechanics.

[32]  J. Riley,et al.  A Lagrangian study of scalar diffusion in isotropic turbulence with chemical reaction , 2003 .

[33]  J. Janicka,et al.  Closure of the Transport Equation for the Probability Density Funcfion of Turbulent Scalar Fields , 1979 .

[34]  Andrew W. Cook,et al.  A laminar flamelet approach to subgrid-scale chemistry in turbulent flows , 1997 .

[35]  S. Turns An Introduction to Combustion: Concepts and Applications , 2000 .

[36]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[37]  N. Swaminathan,et al.  Study of the conditional covariance and variance equations for second order conditional moment closure , 1999 .

[38]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[39]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .