Modeling and Experimental Study of Simultaneous Creep and Transformation in Polycrystalline High-Temperature Shape Memory Alloys

The viscoplastic behavior in high-temperature shape memory alloys and its interaction with the transformation behavior is investigated in this work. Standard creep tests and isobaric transformation-induced tests were conducted for a TiPdNi high-temperature shape memory alloy on a uniaxial frame fitted with a custom high-temperature setup. Motivated by the experimental observations indicating simultaneous creep and phase transformation, a 1D constitutive model is presented that aims to capture the coexistence of the rate-independent transformation and the rate-dependent viscoplastic behavior. Based on continuum thermodynamics, the evolution equations for forward and reverse transformation and viscoplasticity are properly chosen. The material parameters needed for the model calibration are identified from the experimental data. The predicted material response by the proposed constitutive model is in good agreement with the experimental results.

[1]  Dmitri Golberg,et al.  High-temperature shape memory effect in Ti50Pd50 − xNix (x = 10, 15, 20) alloys , 1995 .

[2]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[3]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[4]  Ronald D. Noebe,et al.  Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy , 2006 .

[5]  Zhongjie J. Pu,et al.  Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys , 1995, Smart Structures.

[6]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[7]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[8]  S. Shimizu,et al.  Improvement of shape memory characteristics by precipitation-hardening of TiPdNi alloys , 1998 .

[9]  Christian Lexcellent,et al.  High temperature creep measurements in equiatomic Ni‐Ti shape memory alloy , 2005 .

[10]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[11]  Yohannes Ketema,et al.  Shape Memory Alloys for Passive Vibration Damping , 1998 .

[12]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[13]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[14]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[15]  Dimitris C. Lagoudas,et al.  A constitutive model for high temperature SMAs exhibiting viscoplastic behavior , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  Klaus Neuking,et al.  Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations , 2002 .

[17]  Arun R. Srinivasa,et al.  On the thermomechanics of shape memory wires , 1999 .

[18]  Ronald D. Noebe,et al.  Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications , 2006 .

[19]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[20]  J.H.N. van Vucht,et al.  Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition , 1970 .

[21]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[22]  M. Witcomb,et al.  Platinum Alloys for Shape Memory Applications , 2003 .

[23]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[24]  C. M. Wayman,et al.  Shape Memory and Transformation Behavior of Martensitic Ti-Pd-Ni and Ti-Pt-Ni Alloys , 1990 .

[25]  Marcelo A. Savi,et al.  An overview of constitutive models for shape memory alloys , 2006 .

[26]  A. K. Mukiierjee High‐Temperature‐Creep Mechanism of TiNi , 1968 .

[27]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[28]  J. Perkins,et al.  Shape Memory Effects in Alloys , 1975 .

[29]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[30]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[31]  E. J. Graesser,et al.  Shape‐Memory Alloys as New Materials for Aseismic Isolation , 1991 .

[32]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[33]  Y. Ueno,et al.  The shape memory effect in a Ti50Pd50 alloy , 1993 .

[34]  Paul E. Thoma,et al.  Effect of composition on the amount of second phase and transformation temperatures of NixTi90−xHf10 shape memory alloys , 1999 .

[35]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[36]  Marcelo A. Savi,et al.  Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model , 2002 .

[37]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[38]  David C. Dunand,et al.  Power-law creep in near-equiatomic nickel–titanium alloys , 2007 .

[39]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[40]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of high temperature SMA actuators , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.