Design and fabrication of a multilayer metamaterial antenna with high‐gain and good radiation patterns for WiFi and WiMAX applications

[1]  L. Asadpor,et al.  Design of a high‐gain wideband antenna using double‐layer metasurface , 2018, Microwave and Optical Technology Letters.

[2]  Yashar Zehforoosh,et al.  A dual-band multiple-input multiple-output microstrip antenna with metamaterial structure for LTE and WLAN applications , 2018, AEU - International Journal of Electronics and Communications.

[3]  P. Soh,et al.  A dual band stub‐loaded AMC design for the gain enhancement of a planar monopole antenna , 2018, Microwave and Optical Technology Letters.

[4]  S. K. Jana,et al.  Gain enhancement of a printed leaf shaped UWB antenna using dual FSS layers and experimental study for ground coupling GPR applications , 2018 .

[5]  Sourav Roy,et al.  Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials , 2018, IET Commun..

[6]  G. Luo,et al.  A bandwidth and gain enhancement for microstrip antenna based on metamaterial , 2017 .

[7]  Zhenguo Liu,et al.  Broadband design of circularly polarized high‐gain Fabry‐Perot resonator antenna with simple array thinning technique , 2017 .

[8]  Konstantinos Konstantinidis,et al.  Dual Subwavelength Fabry–Perot Cavities for Broadband Highly Directive Antennas , 2014, IEEE Antennas and Wireless Propagation Letters.

[9]  P. Hall,et al.  Multilayer Partially Reflective Surfaces for Broadband Fabry-Perot Cavity Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[10]  A. Feresidis,et al.  Bandwidth Enhancement of 2-D Leaky-Wave Antennas With Double-Layer Periodic Surfaces , 2014, IEEE Transactions on Antennas and Propagation.

[11]  Yuehe Ge,et al.  The Use of Simple Thin Partially Reflective Surfaces With Positive Reflection Phase Gradients to Design Wideband, Low-Profile EBG Resonator Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[12]  G Goussetis,et al.  Sub-Wavelength Profile 2-D Leaky-Wave Antennas With Two Periodic Layers , 2011, IEEE Transactions on Antennas and Propagation.

[13]  J. Kelly,et al.  Analysis and Design of Sub-Wavelength Resonant Cavity Type 2-D Leaky-Wave Antennas , 2008, IEEE Transactions on Antennas and Propagation.

[14]  R. Gonzalo,et al.  Enhanced directed emission from metamaterial based radiation source , 2008 .

[15]  Filippo Capolino,et al.  Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement , 2006 .

[16]  Jean-Michel Lourtioz,et al.  All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas , 2006 .

[17]  D. Jackson,et al.  2-D periodic leaky-wave antennas-part I: metal patch design , 2005, IEEE Transactions on Antennas and Propagation.

[18]  Lei Zhou,et al.  Directive emissions from subwavelength metamaterial-based cavities , 2005, IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005..

[19]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[20]  Raj Mittra,et al.  Design of a high‐directivity Electromagnetic Band Gap (EBG) resonator antenna using a frequency‐selective surface (FSS) superstrate , 2004 .

[21]  George Goussetis,et al.  Low-profile resonant cavity antenna with artificial magnetic conductor ground plane , 2004 .

[22]  J. Vardaxoglou,et al.  High gain planar antenna using optimised partially reflective surfaces , 2001 .

[23]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[24]  G. V. Trentini Partially reflecting sheet arrays , 1956 .

[25]  P. Hall,et al.  Broadband Sub-Wavelength Profile High-Gain Antennas Based on Multi-Layer Metasurfaces , 2015, IEEE Transactions on Antennas and Propagation.