Matroids with the Circuit Cover Property

We verify a conjecture regarding circuits of a binary matroid. Acircuit coverof a integer-weighted matroid (M,p) is a list of circuits ofMsuch that each elementeis in exactlyp(e) circuits from the list. We characterize those binary matroids for which two obvious necessary conditions for a weighting (M,p) to have a circuit cover are also sufficient.

[1]  Cun-Quan Zhang On even circuit decompositions of Eulerian graphs , 1994 .

[2]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[3]  W. T. Tutte Matroids and graphs , 1959 .

[4]  James G. Oxley,et al.  Matroid theory , 1992 .

[5]  Klaus Truemper,et al.  Matroid decomposition , 1992 .

[6]  Paul Seymour,et al.  On Tutte's extension of the four-colour problem , 1981, J. Comb. Theory, Ser. B.

[7]  Cun-Quan Zhang Cycle Covers and Cycle Decompositions of Graphs , 1993 .

[8]  William J. Cook,et al.  An integer analogue of Carathéodory's theorem , 1986, J. Comb. Theory, Ser. B.

[9]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[10]  Brian Alspach,et al.  Graphs with the circuit cover property , 1994 .

[11]  Bill Jackson On circuit covers, circuit decompositions and Euler tours of graphs , 1993 .

[12]  Jan van den Heuvel,et al.  Removable Circuits in Multigraphs , 1997, J. Comb. Theory, Ser. B.

[13]  László Lovász,et al.  The Cocycle Lattice of Binary Matroids , 1993, Eur. J. Comb..

[14]  Paul D. Seymour Even circuits in planar graphs , 1981, J. Comb. Theory, Ser. B.

[15]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[16]  N. Alon,et al.  Covering Multigraphs by Simple Circuits , 1985 .

[17]  Cun-Quan Zhang,et al.  Cycle cover theorems and their applications , 1991, Graph Structure Theory.

[18]  Paul Seymour,et al.  Detecting Matroid Minors , 1981 .

[19]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[20]  Paul D. Seymour,et al.  A two-commodity cut theorem , 1978, Discret. Math..

[21]  Cun-Quan Zhang,et al.  Hamiltonian weights and unique 3-edge-colorings of cubic graphs , 1995, J. Graph Theory.

[22]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[23]  Luis A. Goddyn Cones, lattices and Hilbert bases of circuits and perfect matchings , 1991, Graph Structure Theory.

[24]  Paul D. Seymour,et al.  Matroids and Multicommodity Flows , 1981, Eur. J. Comb..

[25]  Cun-Quan Zhang,et al.  Circuit Decompositions of Eulerian Graphs , 2000, J. Comb. Theory, Ser. B.