A Measurement of the CMB ⟨EE⟩ Spectrum from the 2003 Flight of BOOMERANG

We report measurements of the CMB polarization power spectra from the 2003 January Antarctic flight of BOOMERANG. The primary results come from 6 days of observation of a patch covering 0.22% of the sky centered near R.A. = 82.°5, decl. = -45°. The observations were made using four pairs of polarization-sensitive bolometers operating in bands centered at 145 GHz. Using two independent analysis pipelines, we measure a nonzero ⟨EE⟩ signal in the range 201 < l < 1000 with a significance of 4.8 σ, a 2 σ upper limit of 8.6 μK2 for any ⟨BB⟩ contribution, and a 2 σ upper limit of 7.0 μK2 for the ⟨EB⟩ spectrum. Estimates of foreground intensity fluctuations and the nondetection of ⟨BB⟩ and ⟨EB⟩ signals rule out any significant contribution from Galactic foregrounds. The results are consistent with a ΛCDM cosmology seeded by adiabatic perturbations. We note that this is the first detection of CMB polarization with bolometric detectors.

[1]  C. Sbarra,et al.  Deep 1.4-GHz observations of diffuse polarized emission , 2005, astro-ph/0512286.

[2]  A. Melchiorri,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507507.

[3]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[4]  A. Melchiorri,et al.  Cosmological Parameters from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507503.

[5]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[6]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[7]  P. Fosalba,et al.  Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops , 2005, astro-ph/0501427.

[8]  P. Vielva,et al.  Limits on the detectability of the CMB B-mode polarization imposed by foregrounds , 2004, astro-ph/0411567.

[9]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[10]  P. Farese,et al.  First Measurements of the Polarization of the Cosmic Microwave Background Radiation at Small Angular Scales from CAPMAP , 2004, astro-ph/0409380.

[11]  R. Nichol,et al.  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[12]  A. Challinor,et al.  Error analysis of quadratic power spectrum estimates for cosmic microwave background polarization: sampling covariance , 2004, astro-ph/0410097.

[13]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[14]  E. Hivon,et al.  Fast estimation of polarization power spectra using correlation functions , 2003, astro-ph/0303414.

[15]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[16]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[17]  J. Richard Bond,et al.  Cosmic microwave background snapshots: pre-WMAP and post-WMAP , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[19]  R. Sault,et al.  Polarization Observations in a Low Synchrotron Emission Field at 1.4 GHz , 2003, astro-ph/0307363.

[20]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[21]  T. Phillips,et al.  Millimeter and Submillimeter Detectors for Astronomy , 2003 .

[22]  J. J. Bock,et al.  A Polarization Sensitive Bolometric Receiver for Observations of the Cosmic Microwave Background , 2002, SPIE Astronomical Telescopes + Instrumentation.

[23]  A. Melchiorri,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the Cosmic Microwave Background from Two New Analyses of BOOMERANG Observations , 2002, astro-ph/0212229.

[24]  P. A. R. Ade,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of Boomerang Observations , 2002 .

[25]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[26]  V. V. Hristov,et al.  BOOMERANG: A Balloon-borne Millimeter-Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background , 2002, astro-ph/0206254.

[27]  L. Pogosian,et al.  Signatures of kinetic and magnetic helicity in the cosmic microwave background radiation , 2002 .

[28]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[29]  V. V. Hristov,et al.  The BOOMERANG North America Instrument: A Balloon-borne Bolometric Radiometer Optimized for Measurements of Cosmic Background Radiation Anisotropies from 0.°3 to 4° , 2001, astro-ph/0105148.

[30]  Wayne Hu Dark Synergy: Gravitational Lensing and the CMB , 2001, astro-ph/0108090.

[31]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[32]  N. Turok,et al.  Constraining isocurvature perturbations with cosmic microwave background polarization. , 2000, Physical review letters.

[33]  H. Kurki-Suonio,et al.  Constraining isocurvature fluctuations with the Planck surveyor , 1999, astro-ph/9907221.

[34]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[35]  L. Knox Cosmic Microwave Background Anisotropy Window Functions Revisited , 1999 .

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[38]  M. Kamionkowski,et al.  Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.

[39]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[40]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[41]  White,et al.  Dependence of inflationary reconstruction upon cosmological parameters. , 1995, Physical review. D, Particles and fields.

[42]  P. Steinhardt,et al.  Polarization of the microwave background due to primordial gravitational waves , 1993, astro-ph/9306027.

[43]  E. Wright Long-Wavelength Absorption by Fractal Dust Grains , 1987 .

[44]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[45]  Martin J. Rees,et al.  POLARIZATION AND SPECTRUM OF THE PRIMEVAL RADIATION IN AN ANISOTROPIC UNIVERSE. , 1968 .