Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors

A theory of NMR shielding tensors is derived from Ramsey’s expressions, using the framework of the random phase approximation (RPA) and localized molecular orbitals. By expanding angular momentum terms relative to a local origin for each orbital and using properties of the RPA solutions, we arrive at shielding expressions that contain no reference to an overall gauge origin and that lead to appropriate damping of basis set errors in contributions from distant groups. The expressions allow an analysis of the shielding into intrinsic bond and bond–bond coupling contributions. The resulting method is a variant of the coupled‐Hartree–Fock approach. Ab initio results are presented for 13C isotropic shieldings and shielding tensors in a number of organic molecules ranging in size up to benzene. These results agree very well with experiment, for both isotropic shieldings and principal tensor components, even in double‐zeta basis sets. For some low symmetry molecules we study the asymmetry of the shielding tensor...

[1]  D. Lightner,et al.  The octant rule. 11. Experimental and computed chiroptical properties of thioketones , 1984 .

[2]  I. Ando,et al.  Theoretical Determination of the Principal Axes of 13C Chemical Shielding Tensors and their Relationship to the Anisotropies in Some Organic Compounds , 1975 .

[3]  A. J. Sadlej A new solution for the gauge origin problem , 1975 .

[4]  H. Nakatsuji What is the best expression of the second‐order sum‐over‐state perturbation energy based on the Hartree‐Fock wavefunction? , 1974 .

[5]  Jeremy I. Musher,et al.  On the Magnetic Susceptibility of Aromatic Hydrocarbons and , 1965 .

[6]  J. Ridard,et al.  Orbital pair theory of N.M.R. shielding , 1981 .

[7]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[8]  A. Dalgarno,et al.  The time-dependent coupled Hartree-Fock approximation , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  E. Oldfield,et al.  Carbon-13 chemical shielding tensors in l-threonine , 1983 .

[10]  W. T. Raynes,et al.  Density-dependent magnetic shielding in gas phase 13C N.M.R. , 1977 .

[11]  O. Matsuoka Gaussian expansion method for molecular integrals of molecular properties , 1971 .

[12]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[13]  Norman Ramsey Magnetic Shielding of Nuclei in Molecules , 1950 .

[14]  Y. I'haya,et al.  Evaluation of molecular spin-orbit integrals by a gaussian expansion method , 1972 .

[15]  R. Yaris On the choice of gauge for approximate quantum mechanical wavefunctions , 1976 .

[16]  H. Mcconnell,et al.  Theory of Nuclear Magnetic Shielding in Molecules. I. Long‐Range Dipolar Shielding of Protons , 1957 .

[17]  W. Kutzelnigg,et al.  Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules , 1982 .

[18]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[19]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[20]  A. Saika,et al.  Electron correlation effects on magnetic properties of molecules , 1982 .

[21]  B. P. Dailey,et al.  Magnetic Shielding and Susceptibility Anisotropies , 1974 .

[22]  N. Ramsey CHEMICAL EFFECTS IN NUCLEAR MAGNETIC RESONANCE AND IN DIAMAGNETIC SUSCEPTIBILITY , 1952 .

[23]  Sten Rettrup,et al.  Large-scaleRPA calculations of chiroptical properties of organic molecules: Program RPAC , 1983 .

[24]  A. Hansen,et al.  On the hypervirial relation in the random phase approximation and the sum rules for ordinary and rotatory intensities in finite bases , 1977 .

[25]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[26]  G. Sørensen,et al.  Microwave spectra of pyridine and monodeuterated pyridines. Revised molecular structure of pyridine , 1977 .

[27]  S. Fliszar,et al.  Charge distributions and chemical effects. 13. Ab initio study of the charge density-carbon-13 nuclear magnetic resonance shift correlation for ethylenic carbon atoms , 1978 .

[28]  David R. Lide,et al.  Microwave Spectrum, Structure, and Dipole Moment of Propane , 1960 .

[29]  Robert A. Harris,et al.  Oscillator Strengths and Rotational Strengths in Hartree–Fock Theory , 1969 .

[30]  J. Michl,et al.  LOW-TEMPERATURE CARBON-13 MAGNETIC RESONANCE OF SOLIDS. 1. ALKENES AND CYCLOALKENES , 1980 .

[31]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[32]  S. Huzinaga,et al.  Gaussian-Expansion Methods for Molecular Integrals , 1966 .

[33]  R. Ditchfield,et al.  Proton and carbon-13 chemical shifts: Comparison between theory and experiment , 1984 .

[34]  J. W. Moskowitz,et al.  One‐Electron Properties of Near‐Hartree–Fock Wavefunctions. II. HCHO, CO , 1969 .

[35]  D. Grant,et al.  Carbon-13 dipolar spectroscopy of small organic molecules in argon matrixes , 1981 .

[36]  R. Schneider Asymmetry in Magnetic Second‐Rank Tensor Quantities , 1968 .

[37]  P. Lazzeretti,et al.  Theoretical studies of the benzene molecule: Magnetic susceptibility and nuclear shielding constants , 1981 .

[38]  Robert A. Harris,et al.  A harmonic oscillator model for the magnetic properties of a closed-shell system , 1979 .

[39]  W. Lipscomb The Chemical Shift and Other Second-Order Magnetic and Electric Properties of Small Molecules , 1966 .

[40]  P. Wormer,et al.  The non-empirical calculation of second order molecular properties by means of effective states , 1984 .

[41]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[42]  G. Arrighini,et al.  Electric and magnetic properties of N2 and H2O by the equations‐of‐motion method , 1977 .