Structured eigenvalue condition numbers and linearizations for matrix polynomials

This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.

[1]  Heinz Langer,et al.  Leading coefficients of the eigenvalues of perturbed analytic matrix functions , 1993 .

[2]  Peter Lancaster,et al.  Perturbation Theory for Analytic Matrix Functions: The Semisimple Case , 2003, SIAM J. Matrix Anal. Appl..

[3]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[4]  Silvia Noschese,et al.  Eigenvalue condition numbers: zero-structured versus traditional , 2006 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Eric King-wah Chu,et al.  Perturbation of Eigenvalues for Matrix Polynomials via The Bauer-Fike Theorems , 2003, SIAM J. Matrix Anal. Appl..

[7]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[8]  Sk. Safique Ahmad Pseudospectra of Matrix Pencils and their applications in perturbation analysis of Eigenvalues and Eigendecompositions , 2007 .

[9]  H. Langer,et al.  Remarks on the perturbation of analytic matrix functions II , 1986 .

[10]  M. Berhanu The Polynomial Eigenvalue Problem , 2005 .

[11]  Rafikul Alam,et al.  Pseudospectra, critical points and multiple eigenvalues of matrix polynomials , 2009 .

[12]  Michael Karow,et al.  μ-Values and Spectral Value Sets for Linear Perturbation Classes Defined by a Scalar Product , 2011, SIAM J. Matrix Anal. Appl..

[13]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[14]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[15]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[16]  Shreemayee Bora,et al.  Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems , 2022 .

[17]  Rui Ralha,et al.  Perturbation Splitting for More Accurate Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..

[18]  Timo Betcke,et al.  Optimal Scaling of Generalized and Polynomial Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..

[19]  Michael Karow,et al.  Structured Pseudospectra and the Condition of a Nonderogatory Eigenvalue , 2010, SIAM J. Matrix Anal. Appl..

[20]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[21]  Volker Mehrmann,et al.  Perturbation of purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations , 2008 .

[22]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[23]  Robert Everist Greene,et al.  Introduction to Topology , 1983 .

[24]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[25]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[26]  Daniel Kressner,et al.  Structured Hölder Condition Numbers for Multiple Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..

[27]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[28]  Daniel Kressner,et al.  On the Condition of a Complex Eigenvalue under Real Perturbations , 2004 .

[29]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[30]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[31]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[32]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[33]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[34]  N. Higham,et al.  Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems , 2008 .

[35]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .