A Broad-Spectrum Inhibitor of CRISPR-Cas9

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.

[1]  V. Nagaraja,et al.  Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense , 2013, Microbiology and Molecular Reviews.

[2]  Kira S. Makarova,et al.  Classification and evolution of type II CRISPR-Cas systems , 2014, Nucleic acids research.

[3]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[4]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[5]  Eunji Kim,et al.  In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni , 2017, Nature Communications.

[6]  Yu Xia,et al.  Structural principles within the human-virus protein-protein interaction network , 2011, Proceedings of the National Academy of Sciences.

[7]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[8]  Nevan J. Krogan,et al.  Inhibition of CRISPR-Cas9 with Bacteriophage Proteins , 2017, Cell.

[9]  Jennifer A. Doudna,et al.  New CRISPR-Cas systems from uncultivated microbes , 2016, Nature.

[10]  Yan Zhang,et al.  DNase H Activity of Neisseria meningitidis Cas9. , 2015, Molecular cell.

[11]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[12]  Alan R. Davidson,et al.  Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins , 2015, Nature.

[13]  J. Doudna,et al.  A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9 , 2017, Science Advances.

[14]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[15]  Zhi Xiong,et al.  Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein , 2017, Nature.

[16]  Alan R. Davidson,et al.  A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa , 2014, mBio.

[17]  Peter C. Fineran,et al.  Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species , 2016, Nature Microbiology.

[18]  G. Evans,et al.  Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems , 2016, Molecular cell.

[19]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[20]  K. Severinov,et al.  Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation , 2017, Proceedings of the National Academy of Sciences.

[21]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[22]  Maxim V. Petoukhov,et al.  ATSAS 2.1, a program package for small‐angle scattering data analysis , 2006 .

[23]  Takanori Nakane,et al.  Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. , 2017, Molecular cell.

[24]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[25]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[26]  B. Bassler,et al.  Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system , 2016, Proceedings of the National Academy of Sciences.

[27]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[28]  Lucas B. Harrington,et al.  Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. , 2015, Molecular cell.

[29]  Jennifer A. Doudna,et al.  Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage , 2016, Science.

[30]  Jennifer A. Doudna,et al.  Disabling Cas9 by an anti-CRISPR DNA mimic , 2017, Science Advances.

[31]  A. Buckling,et al.  The diversity-generating benefits of a prokaryotic adaptive immune system , 2016, Nature.

[32]  Jennifer A. Doudna,et al.  A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9 , 2017 .

[33]  G. Lander,et al.  Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex , 2017, Cell.

[34]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[35]  Ines Fonfara,et al.  The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA , 2016, Nature.

[36]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[37]  Liisa Holm,et al.  Dali server update , 2016, Nucleic Acids Res..

[38]  Kira S. Makarova,et al.  Diversity and evolution of class 2 CRISPR–Cas systems , 2017, Nature Reviews Microbiology.

[39]  John A. Tainer,et al.  Accurate assessment of mass, models and resolution by small-angle scattering , 2013, Nature.

[40]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[41]  A. V. Semenyuk,et al.  GNOM – a program package for small-angle scattering data processing , 1991 .

[42]  S. Casjens,et al.  Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.

[43]  Thomas C. Terwilliger,et al.  Reciprocal-space solvent flattening , 1999, Acta crystallographica. Section D, Biological crystallography.

[44]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[45]  Steven Lin,et al.  Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery , 2014, eLife.

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  Luciano A. Marraffini,et al.  Cas9 specifies functional viral targets during CRISPR-Cas adaptation , 2015, Nature.

[48]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[49]  Jennifer A. Doudna,et al.  Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity , 2014, Nature Structural &Molecular Biology.

[50]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[51]  Yan Zhang,et al.  Naturally Occurring Off-Switches for CRISPR-Cas9 , 2016, Cell.

[52]  P. C. Fineran,et al.  Regulation of CRISPR-Cas adaptive immune systems. , 2017, Current opinion in microbiology.

[53]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[54]  J. Marshall Quorum sensing , 2013, Proceedings of the National Academy of Sciences.

[55]  R. Terns,et al.  Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation , 2015, Genes & development.

[56]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[57]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[58]  Lucas B. Harrington,et al.  A thermostable Cas9 with increased lifetime in human plasma , 2017, bioRxiv.

[59]  Jennifer A. Doudna,et al.  Conformational control of DNA target cleavage by CRISPR–Cas9 , 2015, Nature.

[60]  Yan Zhou,et al.  Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3 , 2016, Nature Structural &Molecular Biology.