Shifted products that are coprime pure powers

A set A of positive integers is called a coprime Diophantine powerset if the shifted product ab + 1 of two different elements a and b of A is always a pure power, and the occurring pure powers are all coprime. We prove that each coprime Diophantine powerset A ⊂ {1,....., N} has |A| ≤ 8000 log N/ log log N for sufficiently large N. The proof combines results from extremal graph theory with number theory. Assuming the famous abc-conjecture, we are able to both drop the coprimality condition and reduce the upper bound to c log log N for a fixed constant c.

[1]  Enrico Bombieri,et al.  Squares in arithmetic progressions , 1992 .

[2]  J. L. Selfridge,et al.  A survey of equal sums of like powers , 1967 .

[3]  H. Davenport,et al.  THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .

[4]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[5]  Andrej Dujella,et al.  An Absolute Bound for the Size of Diophantine m-Tuples , 2001 .

[6]  R. Guy Unsolved Problems in Number Theory , 1981 .

[7]  R. Tijdeman,et al.  On the greatest prime factor of (ab + 1) (ac + 1) (bc + 1) , 1997 .

[8]  Andrej Dujella,et al.  There are only finitely many Diophantine quintuples , 2004 .

[9]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[10]  Yann Bugeaud,et al.  On a problem of Diophantus for higher powers , 2003, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Katalin Gyarmati,et al.  On generalizations of a problem of Diophantus , 2004 .

[12]  P. Turán On the theory of graphs , 1954 .

[13]  Katalin Gyarmati On a problem of Diophantus , 2001 .

[14]  C. L. Stewart,et al.  Congruence properties of the Ω-function on sumsets , 1999 .

[15]  P. Erdös On an extremal problem in graph theory , 1970 .

[16]  Katalin Gyarmati,et al.  On shifted products which are powers , 2002 .

[17]  Andrew Granville,et al.  ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant , 2000 .

[18]  András Sárközy,et al.  Congruence properties of the $\Omega$-function on sumsets , 1999 .

[19]  Andrew Granville,et al.  ABC allows us to count squarefrees , 1998 .

[20]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[21]  Klaas Pieter Hart,et al.  Open Problems , 2022, Dimension Groups and Dynamical Systems.

[22]  Enrico Bombieri,et al.  A Note on squares in arithmetic progressions, II , 2002 .

[23]  Miklós Simonovits,et al.  On a class of degenerate extremal graph problems , 1983, Comb..

[24]  A. Granville,et al.  It ’ s As Easy As abc , 2002 .