A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix
暂无分享,去创建一个
[1] H. Rutishauser. On jacobi rotation patterns , 1963 .
[2] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[3] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[4] W. E. Gentleman. Least Squares Computations by Givens Transformations Without Square Roots , 1973 .
[5] Charles Francis Van Loan. Generalized singular values with algorithms and applications. , 1973 .
[6] J. Cullum,et al. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.
[7] C. Paige. Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .
[8] Ii John Franklin Palmer. Conjugate-direction methods and parallel-computing. , 1974 .
[9] Richard R. Underwood. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems , 1975 .
[10] G. Stewart. The economical storage of plane rotations , 1976 .
[11] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[12] Axel Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .