Copula-Based Semiparametric Models for Multivariate Time Series

The authors extend to multivariate contexts the copula-based univariate time series modeling approach of Chen & Fan [X. Chen, Y. Fan, Estimation of copula-based semiparametric time series models, J. Econometrics 130 (2006) 307-335; X. Chen, Y. Fan, Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification, J. Econometrics 135 (2006) 125-154]. In so doing, they tackle simultaneously serial dependence and interdependence between time series. Their technique differs from the usual approach to time series copula modeling in which the series are first modeled individually and copulas are used to model the dependence between their innovations. The authors discuss parameter estimation and goodness-of-fit testing for their model, with emphasis on meta-elliptical and Archimedean copulas. The method is illustrated with data on the Canadian/US exchange rate and the value of oil futures over a ten-year period.

[1]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[2]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[3]  Wende Yi,et al.  Statistical properties of parametric estimators for Markov chain vectors based on copula models , 2010 .

[4]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[5]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[6]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[7]  Brendan K. Beare ARCHIMEDEAN COPULAS AND TEMPORAL DEPENDENCE , 2010, Econometric Theory.

[8]  Jean-François Quessy,et al.  Dependence structure of conditional Archimedean copulas , 2008 .

[9]  B. Rémillard,et al.  Empirical Processes Based on Pseudo-Observations II : theMultivariate , 1998 .

[10]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[11]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[12]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[13]  A. Harvey Tracking a changing copula , 2010 .

[14]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[15]  B. Rémillard,et al.  Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Dynamic Models , 2011 .

[16]  Credit Migration and Derivatives Pricing Using Copulas , 2005 .

[17]  M. Hofert,et al.  CDO pricing with nested Archimedean copulas , 2011 .

[18]  R. Durrett Probability: Theory and Examples , 1993 .

[19]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[20]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[21]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[22]  E. T. Olsen,et al.  Copulas and Markov processes , 1992 .

[23]  C. Genest,et al.  Multivariate Option Pricing Using Dynamic Copula Models , 2005 .

[24]  B. Rémillard,et al.  Rank-Based Extensions of the Brock, Dechert, and Scheinkman Test , 2007 .

[25]  R. Ibragimov COPULA-BASED CHARACTERIZATIONS FOR HIGHER ORDER MARKOV PROCESSES , 2009, Econometric Theory.

[26]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[27]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[28]  Jean-David Fermanian,et al.  An empirical central limit theorem with applications to copulas under weak dependence , 2009 .

[29]  Brendan K. Beare COPULAS AND TEMPORAL DEPENDENCE , 2008 .

[30]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[31]  Fentaw Abegaz,et al.  Dynamic Copula-Based Markov Time Series , 2008 .

[32]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[33]  D. Guégan,et al.  Change analysis of dynamic copula for measuring dependence in multivariate financial data , 2010 .

[34]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[35]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[36]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[37]  Jean-David Fermanian,et al.  Time-dependent copulas , 2012, J. Multivar. Anal..

[38]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[39]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[40]  Marno Verbeek,et al.  Selecting Copulas for Risk Management , 2006 .

[41]  W. Härdle,et al.  Inhomogeneous Dependence Modeling with Time-Varying Copulae , 2009 .

[42]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[43]  Pierre Duchesne,et al.  ROBUST TESTS FOR INDEPENDENCE OF TWO TIME SERIES , 2003 .

[44]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[45]  H. O. Lancaster The Structure of Bivariate Distributions , 1958 .

[46]  Andrew J. Patton A review of copula models for economic time series , 2012, J. Multivar. Anal..

[47]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[48]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .