Broadcast-Optimal Two-Round MPC

An intensive effort by the cryptographic community to minimize the round complexity of secure multi-party computation (MPC) has recently led to optimal two-round protocols from minimal assumptions. Most of the proposed solutions, however, make use of a broadcast channel in every round, and it is unclear if the broadcast channel can be replaced by standard point-to-point communication in a round-preserving manner, and if so, at what cost on the resulting security.

[1]  Peter Scholl,et al.  Low Cost Constant Round MPC Combining BMR and Oblivious Transfer , 2017, Journal of Cryptology.

[2]  Yehuda Lindell,et al.  Efficient Constant Round Multi-Party Computation Combining BMR and SPDZ , 2015, IACR Cryptol. ePrint Arch..

[3]  Yehuda Lindell,et al.  Secure Multi-Party Computation without Agreement , 2005, Journal of Cryptology.

[4]  Sanjam Garg,et al.  Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation , 2015, TCC.

[5]  Ron Rothblum,et al.  Spooky Encryption and Its Applications , 2016, CRYPTO.

[6]  Hoeteck Wee,et al.  Laconic Function Evaluation and Applications , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[7]  Tal Rabin,et al.  Verifiable secret sharing and multiparty protocols with honest majority , 1989, STOC '89.

[8]  Ran Canetti,et al.  Better Two-Round Adaptive Multi-party Computation , 2017, Public Key Cryptography.

[9]  Yuval Ishai,et al.  Group-Based Secure Computation: Optimizing Rounds, Communication, and Computation , 2017, EUROCRYPT.

[10]  Avi Wigderson,et al.  Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract) , 1988, STOC.

[11]  Sanjam Garg,et al.  Two-round Multiparty Secure Computation from Minimal Assumptions , 2018, IACR Cryptol. ePrint Arch..

[12]  Arka Rai Choudhuri,et al.  Two Round Information-Theoretic MPC with Malicious Security , 2019, IACR Cryptol. ePrint Arch..

[13]  Yehuda Lindell,et al.  Sequential composition of protocols without simultaneous termination , 2002, PODC '02.

[14]  Ueli Maurer,et al.  Player Simulation and General Adversary Structures in Perfect Multiparty Computation , 2000, Journal of Cryptology.

[15]  Sanjam Garg,et al.  Two-Round Multiparty Secure Computation Minimizing Public Key Operations , 2018, IACR Cryptol. ePrint Arch..

[16]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[17]  Danny Dolev,et al.  Authenticated Algorithms for Byzantine Agreement , 1983, SIAM J. Comput..

[18]  Fabrice Benhamouda,et al.  Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions , 2018, TCC.

[19]  Arka Rai Choudhuri,et al.  Round-Optimal Secure Multiparty Computation with Honest Majority , 2018, IACR Cryptol. ePrint Arch..

[20]  Silvio Micali Very Simple and Efficient Byzantine Agreement , 2017, ITCS.

[21]  Yuval Ishai,et al.  Randomizing polynomials: A new representation with applications to round-efficient secure computation , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[22]  Yehuda Lindell,et al.  More Efficient Constant-Round Multi-Party Computation from BMR and SHE , 2016, IACR Cryptol. ePrint Arch..

[23]  Anat Paskin-Cherniavsky,et al.  Secure Multiparty Computation with Minimal Interaction , 2010, CRYPTO.

[24]  Nancy A. Lynch,et al.  A Lower Bound for the Time to Assure Interactive Consistency , 1982, Inf. Process. Lett..

[25]  Donald Beaver,et al.  Precomputing Oblivious Transfer , 1995, CRYPTO.

[26]  Sandro Coretti,et al.  Probabilistic Termination and Composability of Cryptographic Protocols , 2016, CRYPTO.

[27]  Craig Gentry,et al.  Two-Round Secure MPC from Indistinguishability Obfuscation , 2014, TCC.

[28]  Sanjam Garg,et al.  Garbled Protocols and Two-Round MPC from Bilinear Maps , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[29]  Yuval Ishai,et al.  Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials , 2002, ICALP.

[30]  Matthias Fitzi,et al.  Detectable byzantine agreement secure against faulty majorities , 2002, PODC '02.

[31]  Yuval Ishai,et al.  On 2-Round Secure Multiparty Computation , 2002, CRYPTO.

[32]  Richard Cleve,et al.  Limits on the security of coin flips when half the processors are faulty , 1986, STOC '86.

[33]  Yuval Ishai,et al.  The round complexity of verifiable secret sharing and secure multicast , 2001, STOC '01.

[34]  Fabrice Benhamouda,et al.  k-Round Multiparty Computation from k-Round Oblivious Transfer via Garbled Interactive Circuits , 2018, EUROCRYPT.

[35]  Alex Samorodnitsky,et al.  On the Round Complexity of Randomized Byzantine Agreement , 2019, IACR Cryptol. ePrint Arch..

[36]  Jonathan Katz,et al.  Global-Scale Secure Multiparty Computation , 2017, CCS.

[37]  Yehuda Lindell,et al.  A Framework for Constructing Fast MPC over Arithmetic Circuits with Malicious Adversaries and an Honest-Majority , 2017, IACR Cryptol. ePrint Arch..

[38]  Emmanuela Orsini,et al.  Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT) , 2018, IACR Cryptol. ePrint Arch..

[39]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[40]  Yehuda Lindell,et al.  Secure Computation on the Web: Computing without Simultaneous Interaction , 2011, IACR Cryptol. ePrint Arch..

[41]  Ran El-Yaniv,et al.  Resilient-optimal interactive consistency in constant time , 2003, Distributed Computing.

[42]  Jonathan Katz,et al.  On Expected Constant-Round Protocols for Byzantine Agreement , 2006, CRYPTO.

[43]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[44]  Rafail Ostrovsky,et al.  Secure Computation with Honest-Looking Parties: What If Nobody Is Truly Honest? (Extended Abstract) , 1999, STOC.

[45]  Arpita Patra,et al.  Beyond Honest Majority: The Round Complexity of Fair and Robust Multi-party Computation , 2019, Journal of Cryptology.

[46]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.

[47]  Birgit Pfitzmann,et al.  Unconditional Byzantine Agreement for any Number of Faulty Processors , 1992, STACS.

[48]  Elaine Shi,et al.  Constant-Round MPC with Fairness and Guarantee of Output Delivery , 2015, CRYPTO.

[49]  Vinod Vaikuntanathan,et al.  Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE , 2012, EUROCRYPT.

[50]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[51]  Daniel Wichs,et al.  Two Round Multiparty Computation via Multi-key FHE , 2016, EUROCRYPT.

[52]  Sandro Coretti,et al.  Round-Preserving Parallel Composition of Probabilistic-Termination Cryptographic Protocols , 2021, Journal of Cryptology.

[53]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[54]  Yuval Ishai,et al.  Two-Round MPC: Information-Theoretic and Black-Box , 2018, IACR Cryptol. ePrint Arch..

[55]  Arpita Patra,et al.  On the Exact Round Complexity of Secure Three-Party Computation , 2018, Journal of Cryptology.

[56]  Mihir Bellare,et al.  Foundations of garbled circuits , 2012, CCS.

[57]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[58]  Ravi Montenegro,et al.  Near Optimal Bounds for Collision in Pollard Rho for Discrete Log , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[59]  Zvika Brakerski,et al.  Perfect Secure Computation in Two Rounds , 2018, IACR Cryptol. ePrint Arch..

[60]  Yehuda Lindell,et al.  Fairness Versus Guaranteed Output Delivery in Secure Multiparty Computation , 2014, Journal of Cryptology.

[61]  Zvika Brakerski,et al.  Degree 2 is Complete for the Round-Complexity of Malicious MPC , 2019, IACR Cryptol. ePrint Arch..

[62]  Abhi Shelat,et al.  Adaptively Secure MPC with Sublinear Communication Complexity , 2019, Journal of Cryptology.

[63]  Anat Paskin-Cherniavsky,et al.  Secure Computation with Minimal Interaction, Revisited , 2015, CRYPTO.

[64]  Rafail Ostrovsky,et al.  Round Complexity of Authenticated Broadcast with a Dishonest Majority , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[65]  Eran Omri,et al.  Characterization of Secure Multiparty Computation Without Broadcast , 2016, TCC.

[66]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.