Electrical 180o switching of N\'eel vector in spin-splitting antiferromagnet

Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultra-dense and ultra-fast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180o switching of N\'eel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite N\'eel vectors as binary"0"and"1". However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90o or 120o switching of N\'eel vector, which unavoidably require multiple writing channels that contradicts ultra-dense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier, and experimentally achieve electrical 180o switching of spin-splitting antiferromagnet Mn5Si3. Such a 180o switching is read out by the N\'eel vector-induced anomalous Hall effect. Based on our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high and low resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.

[1]  S. Fukami,et al.  Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque , 2023, Nature Materials.

[2]  H. Ohno,et al.  Thermal stability of non-collinear antiferromagnetic Mn3Sn nanodot , 2023, Applied Physics Letters.

[3]  Z. Zeng,et al.  Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction , 2023, Nature.

[4]  R. Arita,et al.  Perpendicular full switching of chiral antiferromagnetic order by current , 2022, Nature.

[5]  See-Hun Yang,et al.  Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque , 2022, Science advances.

[6]  J. Sinova,et al.  Emerging Research Landscape of Altermagnetism , 2022, Physical Review X.

[7]  J. Sinova,et al.  Spontaneous Anomalous Hall Effect Arising from an Unconventional Compensated Magnetic Phase in a Semiconductor. , 2021, Physical review letters.

[8]  Takahiro Tanaka,et al.  Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO_{2}. , 2021, Physical review letters.

[9]  Q. Wang,et al.  Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO_{2}. , 2021, Physical review letters.

[10]  D. Muller,et al.  Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide , 2021, Nature Electronics.

[11]  J. Sinova,et al.  Anomalous Hall antiferromagnets , 2021, Nature Reviews Materials.

[12]  H. Ohno,et al.  Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque , 2021, Nature Materials.

[13]  J. Sinova,et al.  Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling , 2021, Physical Review X.

[14]  E. Tsymbal,et al.  Spin-neutral currents for spintronics , 2021, Nature Communications.

[15]  S. Blügel,et al.  Spin waves in the collinear antiferromagnetic phase of Mn5Si3 , 2020, 2011.05455.

[16]  F. Pan,et al.  Size-dependent anomalous Hall effect in noncollinear antiferromagnetic Mn3Sn films , 2020 .

[17]  A. Zunger,et al.  Giant momentum-dependent spin splitting in centrosymmetric low- Z antiferromagnets , 2020 .

[18]  A. Brataas,et al.  Subterahertz spin pumping from an insulating antiferromagnet , 2020, Science.

[19]  R. Arita,et al.  Electrical manipulation of a topological antiferromagnetic state , 2020, Nature.

[20]  J. Sinova,et al.  An anomalous Hall effect in altermagnetic ruthenium dioxide , 2020, Nature Electronics.

[21]  J. Sinova,et al.  Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. , 2020, Physical review letters.

[22]  Jinwoo Hwang,et al.  Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe_{2}O_{3} Epitaxial Films. , 2019, Physical review letters.

[23]  A. Hariki,et al.  Antiferromagnetism in RuO2 as d -wave Pomeranchuk instability , 2019, Physical Review B.

[24]  Y. Motome,et al.  Spin current generation in organic antiferromagnets , 2019, Nature Communications.

[25]  E. Dagotto,et al.  Magnetoelectricity in multiferroics: a theoretical perspective , 2019, National science review.

[26]  J. Sinova,et al.  Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets , 2019, Science Advances.

[27]  J. Wunderlich,et al.  Electrically induced and detected Néel vector reversal in a collinear antiferromagnet , 2018, Nature Communications.

[28]  F. Pan,et al.  Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. , 2018, Physical review letters.

[29]  S. Petit,et al.  Spin Fluctuations Drive the Inverse Magnetocaloric Effect in Mn_{5}Si_{3}. , 2018, Physical review letters.

[30]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[31]  C. Felser,et al.  Spin-Polarized Current in Noncollinear Antiferromagnets. , 2017, Physical review letters.

[32]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[33]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[34]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[35]  R. Chantrell,et al.  Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets , 2014, 1409.7397.

[36]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[37]  I. Turek,et al.  Room-temperature antiferromagnetic memory resistor. , 2014, Nature materials.

[38]  H. Löhneysen,et al.  Large topological Hall effect in the non-collinear phase of an antiferromagnet , 2014, Nature Communications.

[39]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  F. Zeng,et al.  Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. , 2012, Physical review letters.

[41]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[42]  V. Petříček,et al.  Study of the antiferromagnetism of Mn5Si3: an inverse magnetocaloric effect material , 2012 .

[43]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[44]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[45]  H. Ohno,et al.  Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions , 2011 .

[46]  J. Hayakawa,et al.  A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. , 2011, Nature materials.

[47]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[48]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[49]  C. Chappert,et al.  Domain wall creep in magnetic wires. , 2004, Physical review letters.

[50]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[54]  Meier,et al.  Nucleation of Magnetization Reversal in Individual Nanosized Nickel Wires. , 1996, Physical review letters.

[55]  J. B. Forsyth,et al.  Antiferromagnetism in Mn5Si3: the magnetic structure of the AF2 phase at 70 K , 1995 .

[56]  J. Moodera,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[57]  J. B. Forsyth,et al.  The low-temperature antiferromagnetic structure of Mn5Si3 revised in the light of neutron polarimetry , 1992 .

[58]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[59]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[62]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .