Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape

[1]  A. Sette,et al.  SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines , 2022, Science immunology.

[2]  P. Maes,et al.  Imprinted antibody responses against SARS-CoV-2 Omicron sublineages , 2022, Science.

[3]  A. Sette,et al.  Omicron spike function and neutralizing activity elicited by a comprehensive panel of vaccines , 2022, Science.

[4]  Qian Wang,et al.  Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 , 2022, Nature.

[5]  O. Pybus,et al.  Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa , 2022, Nature Medicine.

[6]  P. Maes,et al.  Imprinted antibody responses against SARS-CoV-2 Omicron sublineages , 2022, bioRxiv.

[7]  Yuxin Chen,et al.  The Third dose of CoronVac vaccination induces broad and potent adaptive immune responses that recognize SARS-CoV-2 Delta and Omicron variants , 2022, Emerging microbes & infections.

[8]  L. Walker,et al.  Recall of preexisting cross-reactive B cell memory after Omicron BA.1 breakthrough infection , 2022, Science Immunology.

[9]  M. Nussenzweig,et al.  Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost , 2022, Nature.

[10]  Justine C. Williams,et al.  Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine , 2022, bioRxiv.

[11]  Frances E. Muldoon,et al.  Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity , 2022, Nature.

[12]  M. Gale,et al.  Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity , 2022, Cell.

[13]  A. Walls,et al.  SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses , 2022, Cell.

[14]  A. Walls,et al.  Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement , 2021, bioRxiv.

[15]  M. Kraemer,et al.  Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa , 2021, Nature.

[16]  A. Telenti,et al.  Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift , 2021, Nature.

[17]  Aaron M. Rosenfeld,et al.  mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern , 2021, Science.

[18]  A. Meola,et al.  mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants , 2021, Immunity.

[19]  A. Telenti,et al.  Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies , 2021, Nature.

[20]  M. Beltramello,et al.  Broad betacoronavirus neutralization by a stem helix–specific human antibody , 2021, Science.

[21]  M. Beltramello,et al.  SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape , 2021, Nature.

[22]  S. Crotty Hybrid immunity , 2021, Science.

[23]  C. Rice,et al.  Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection , 2021, Nature.

[24]  M. Davenport,et al.  Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection , 2021, Nature Medicine.

[25]  Aaron M. Rosenfeld,et al.  Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination , 2021, Science Immunology.

[26]  T. Ndung’u,et al.  Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma , 2021, Nature.

[27]  L. Stamatatos,et al.  mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection , 2021, Science.

[28]  A. Iafrate,et al.  Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity , 2021, Cell.

[29]  William T. Harvey,et al.  Author Correction: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies , 2021, Nature.

[30]  Ravindra K. Gupta,et al.  The effect of spike mutations on SARS-CoV-2 neutralization , 2021, Cell Reports.

[31]  D. Fremont,et al.  Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies , 2021, Nature Medicine.

[32]  D. Stuart,et al.  Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera , 2021, Cell.

[33]  D. Stuart,et al.  Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera , 2021, Cell.

[34]  M. Boothby Faculty Opinions recommendation of Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. , 2021, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[35]  A. Achiron,et al.  SARS-CoV-2 antibody dynamics and B-cell memory response over time in COVID-19 convalescent subjects , 2021, Clinical Microbiology and Infection.

[36]  B. Haynes,et al.  SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines , 2021, bioRxiv.

[37]  D. Ho,et al.  Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 , 2021, bioRxiv.

[38]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[39]  Bjoern Peters,et al.  Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection , 2021, Science.

[40]  A. Meola,et al.  Maturation and persistence of the anti-SARS-CoV-2 memory B cell response , 2020, Cell.

[41]  R. Tibshirani,et al.  Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome , 2020, Science Immunology.

[42]  M. Nussenzweig,et al.  Evolution of Antibody Immunity to SARS-CoV-2 , 2020, bioRxiv.

[43]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[44]  L. Carter,et al.  Functional SARS-CoV-2-specific immune memory persists after mild COVID-19 , 2020, medRxiv.

[45]  Colin Renfrew,et al.  Phylogenetic network analysis of SARS-CoV-2 genomes , 2020, Proceedings of the National Academy of Sciences.

[46]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[47]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[48]  B. Graham,et al.  Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation , 2020, bioRxiv.

[49]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[50]  Barney S. Graham,et al.  Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen , 2017, Proceedings of the National Academy of Sciences.

[51]  D. Jarrossay,et al.  Clonal dissection of the human memory B‐cell repertoire following infection and vaccination , 2009, European journal of immunology.

[52]  Martin Odersky,et al.  An Overview of the Scala Programming Language , 2004 .

[53]  Dr Ferdiye Taner,et al.  The enzyme-linked immunosorbent assay (ELISA). , 1976, Bulletin of the World Health Organization.