Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and scompact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of �-operation in the order and interval topologies on them.

[1]  A SURVEY ON SHARP ELEMENTS IN UNSHARP QUANTUM LOGICS , 2001 .

[2]  Frantisek Kopka Compatibility in D-posets , 1995 .

[3]  M. Katětov Remarks on Boolean algebras , 1951 .

[4]  Orrin Frink,et al.  Topology in lattices , 1942 .

[5]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[6]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[7]  Saharon Shelah,et al.  Remarks on Boolean algebras , 1980 .

[8]  A. Adrian Albert,et al.  On ordered algebras , 1940 .

[9]  Lattices and Quantum Logics with Separated Intervals, Atomicity , 1998 .

[10]  Zdenka Riecanová Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..

[11]  Jan Paseka,et al.  Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras , 2010 .

[12]  ORDER-TOPOLOGICAL LATTICE EFFECT ALGEBRAS , 2003 .

[13]  Zdenka Riečanová ON ORDER CONTINUITY OF QUANTUM STRUCTURES AND THEIR HOMOMORPHISMS , 1996 .

[14]  Zdenka Riečanová ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .

[15]  Zdenka Riečanová Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .

[16]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[17]  John E. Shelton People's Republic of China , 1973 .

[18]  Jürgen Schmidt,et al.  Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .

[19]  Zdenka Riečanová ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS , 2000 .

[20]  Block-finite atomic orthomodular lattices , 1993 .

[21]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[22]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[23]  Qiang Lei,et al.  Interval topology of lattice effect algebras , 2009, Appl. Math. Lett..

[24]  Jan Paseka,et al.  State smearing theorems and the existence of states on some atomic lattice effect algebras , 2011, J. Log. Comput..