Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
暂无分享,去创建一个
[1] A SURVEY ON SHARP ELEMENTS IN UNSHARP QUANTUM LOGICS , 2001 .
[2] Frantisek Kopka. Compatibility in D-posets , 1995 .
[3] M. Katětov. Remarks on Boolean algebras , 1951 .
[4] Orrin Frink,et al. Topology in lattices , 1942 .
[5] R. J. Greechie,et al. The center of an effect algebra , 1995 .
[6] Zdenka Riečanová,et al. Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .
[7] Saharon Shelah,et al. Remarks on Boolean algebras , 1980 .
[8] A. Adrian Albert,et al. On ordered algebras , 1940 .
[9] Lattices and Quantum Logics with Separated Intervals, Atomicity , 1998 .
[10] Zdenka Riecanová. Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..
[11] Jan Paseka,et al. Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras , 2010 .
[12] ORDER-TOPOLOGICAL LATTICE EFFECT ALGEBRAS , 2003 .
[13] Zdenka Riečanová. ON ORDER CONTINUITY OF QUANTUM STRUCTURES AND THEIR HOMOMORPHISMS , 1996 .
[14] Zdenka Riečanová. ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .
[15] Zdenka Riečanová. Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .
[16] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[17] John E. Shelton. People's Republic of China , 1973 .
[18] Jürgen Schmidt,et al. Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .
[19] Zdenka Riečanová. ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS , 2000 .
[20] Block-finite atomic orthomodular lattices , 1993 .
[21] Adam Grabowski,et al. Orthomodular Lattices , 2008, Formaliz. Math..
[22] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[23] Qiang Lei,et al. Interval topology of lattice effect algebras , 2009, Appl. Math. Lett..
[24] Jan Paseka,et al. State smearing theorems and the existence of states on some atomic lattice effect algebras , 2011, J. Log. Comput..