A Self-Adaptive Weighted Fuzzy c-Means for Mixed-Type Data

[1]  Xiangyang Wang,et al.  Feature selection based on rough sets and particle swarm optimization , 2007, Pattern Recognit. Lett..

[2]  Witold Pedrycz,et al.  Shadowed c-means: Integrating fuzzy and rough clustering , 2010, Pattern Recognit..

[3]  J. Carroll,et al.  Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables , 1984 .

[4]  Witold Pedrycz,et al.  Shadowed sets in the characterization of rough-fuzzy clustering , 2011, Pattern Recognit..

[5]  Miin-Shen Yang,et al.  Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation , 2008, Pattern Recognit. Lett..

[6]  Yadong Wang,et al.  Improving fuzzy c-means clustering based on feature-weight learning , 2004, Pattern Recognit. Lett..

[7]  Michael K. Ng,et al.  Automated variable weighting in k-means type clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Joshua Zhexue Huang,et al.  Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.

[9]  Yonghong Tan,et al.  Neural-networks-based nonlinear dynamic modeling for automotive eng , 2000, Neurocomputing.

[10]  Hong-Jie Xing,et al.  Further improvements in Feature-Weighted Fuzzy C-Means , 2014, Inf. Sci..

[11]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[12]  Chunguang Zhou,et al.  An improved k-prototypes clustering algorithm for mixed numeric and categorical data , 2013, Neurocomputing.