6D SLAM—3D mapping outdoor environments

6D SLAM (simultaneous localization and mapping) or 6D concurrent localization and mapping of mobile robots considers six dimensions for the robot pose, namely, the x, y, and z coordinates and the roll, yaw, and pitch angles. Robot motion and localization on natural surfaces, e.g., driving outdoor with a mobile robot, must regard these degrees of freedom. This paper presents a robotic mapping method based on locally consistent 3D laser range scans. Iterative Closest Point scan matching, combined with a heuristic for closed loop detection and a global relaxation method, results in a highly precise mapping system. A new strategy for fast data association, cached kd-tree search, leads to feasible computing times. With no ground-truth data available for outdoor environments, point relations in maps are compared to numerical relations in uncalibrated aerial images in order to assess the metric validity of the resulting 3D maps. © 2007 Wiley Periodicals, Inc.

[1]  Michael A. Greenspan,et al.  Approximate k-d tree search for efficient ICP , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[2]  David G. Lowe,et al.  Local and global localization for mobile robots using visual landmarks , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[3]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Joachim Hertzberg,et al.  Ground truth evaluation of large urban 6D SLAM , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Bart C. Nabbe,et al.  Progress in 3-D Mapping and Localization , 2001 .

[7]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[9]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[10]  Francis Schmitt,et al.  Fast global registration of 3D sampled surfaces using a multi-z-buffer technique , 1999, Image Vis. Comput..

[11]  Tom Duckett,et al.  3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[12]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[13]  Roland Siegwart,et al.  EKF-based 3D SLAM for structured environment reconstruction , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[15]  Joachim Hertzberg,et al.  High-speed laser localization for mobile robots , 2005, Robotics Auton. Syst..

[16]  Tom Duckett,et al.  A comparison of 3D registration algorithms for autonomous underground mining vehicles , 2005 .

[17]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[18]  Christian Früh,et al.  3D model generation for cities using aerial photographs and ground level laser scans , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[20]  Sebastian Thrun,et al.  Probabilistic Terrain Analysis For High-Speed Desert Driving , 2006, Robotics: Science and Systems.

[21]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[22]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[23]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[24]  Andrew W. Fitzgibbon,et al.  Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models , 1998, Comput. Vis. Image Underst..

[25]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Udo Frese,et al.  Simultaneous Localization and Mapping - A Discussion , 2001 .

[27]  Robert B. Fisher,et al.  Simultaneous Registration of Multiple Range Views Satisfying Global Consistency Constraints For Use In Reverse Engineering , 1996 .

[28]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[29]  Henrik I. Christensen,et al.  Outdoor exploration and SLAM using a compressed filter , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[30]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[31]  Erik Wolfart,et al.  Automated 3D reconstruction of interiors with multiple scan views , 1998, Electronic Imaging.

[32]  Henrik I. Christensen,et al.  2D mapping of cluttered indoor environments by means of 3D perception , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[33]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[34]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[35]  Sebastian Thrun,et al.  6D SLAM with an application in autonomous mine mapping , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[36]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[37]  K. Lingemann,et al.  6D SLAM - preliminary report on closing the loop in six dimensions , 2004 .

[38]  Peter K. Allen,et al.  Localization methods for a mobile robot in urban environments , 2004, IEEE Transactions on Robotics.

[39]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[41]  Ryosuke Shibasaki,et al.  Reconstructing a textured CAD model of an urban environment using vehicle-borne laser range scanners and line cameras , 2003, Machine Vision and Applications.

[42]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[43]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[44]  Peter Kohlhepp,et al.  Schritthaltende 3D-Kartierung und Lokalisierung für mobile Inspektionsroboter , 2003, AMS.

[45]  Ioannis Stamos,et al.  AVENUE: Automated site modeling in urban environments , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.