Dealing with the curse of dimensionality in systems and control: The randomization paradigm

Randomized algorithms have gained increasing popularity in the systems and control community for their ability of dealing in an efficient way with complex systems affected by uncertainty. In particular, at the expense of accepting a predetermined risk of failure, they allow to cope with the complexity/conservatism barriers of classical robust control and optimization methods. In this tutorial paper, we first briefly overview the main results for addressing probabilistic robust optimization problems using a randomized approach, in particular focusing on recent results that allow iterative and distributed implementations. Then, we show how the use of randomization proved to be a key tool in the development of distributed schemes for the solution of problems involving large amounts of data, as the well-known Google PageRank problem. Finally, we overview theoretical computer science and numerical linear algebra approaches for the solution of least-squares problems and low-rank matrix approximations, for the case when the matrices involved are of very large scale. These results, which go under the name of randomized matrix algorithms, may prove very useful in the context of systems estimation and control.

[1]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[2]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[3]  Roberto Tempo,et al.  Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control? , 2007, Eur. J. Control.

[4]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[5]  Roberto Tempo,et al.  Distributed Randomized Algorithms for the PageRank Computation , 2010, IEEE Transactions on Automatic Control.

[6]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1997 .

[7]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[8]  Mario Sznaier,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..

[9]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[10]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[11]  Mathukumalli Vidyasagar,et al.  Randomized algorithms for robust controller synthesis using statistical learning theory , 2001, Autom..

[12]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[13]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[14]  Eduardo F. Camacho,et al.  A new vertex result for robustness problems with interval matrix uncertainty , 2007, 2007 European Control Conference (ECC).

[15]  Mathukumalli Vidyasagar,et al.  Learning and Generalization: With Applications to Neural Networks , 2002 .

[16]  Giuseppe Carlo Calafiore,et al.  A survey of randomized algorithms for control synthesis and performance verification , 2007, J. Complex..

[17]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[18]  Zeev Volkovich,et al.  Randomized Algorithms in Automatic Control and Data Mining , 2014, Intelligent Systems Reference Library.

[19]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[20]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[21]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[22]  G. Calafiore,et al.  Reduced Vertex Set Result for Interval Semidefinite Optimization Problems , 2008 .

[23]  Chiara Ravazzi,et al.  Gossips and Prejudices: Ergodic Randomized Dynamics in Social Networks , 2013, ArXiv.

[24]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[25]  Roberto Tempo,et al.  Monte carlo and las vegas randomized algorithms for systems and control : An introduction , 2007 .

[26]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[27]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[28]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[29]  Giuseppe Carlo Calafiore,et al.  RACT: Randomized Algorithms Control Toolbox for MATLAB , 2008 .

[30]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[31]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[32]  Eamonn J. Keogh,et al.  Curse of Dimensionality , 2010, Encyclopedia of Machine Learning.

[33]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[34]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[35]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[36]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[37]  Ian R. Petersen,et al.  Robust control of uncertain systems: Classical results and recent developments , 2014, Autom..

[38]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[39]  Ion Necoara,et al.  Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization , 2013, Journal of Global Optimization.

[40]  Er-Wei Bai,et al.  A Web Aggregation Approach for Distributed Randomized PageRank Algorithms , 2012, IEEE Transactions on Automatic Control.

[41]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[42]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[43]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[44]  Roberto Tempo,et al.  The PageRank Problem, Multiagent Consensus, and Web Aggregation: A Systems and Control Viewpoint , 2013, IEEE Control Systems.

[45]  Roberto Tempo,et al.  Randomized Methods for Control of Uncertain Systems , 2015, Encyclopedia of Systems and Control.

[46]  Richard Bellman,et al.  Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.

[47]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[48]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[49]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .