Diffusion on Middle-ξ Cantor Sets

In this paper, we study Cζ-calculus on generalized Cantor sets, which have self-similar properties and fractional dimensions that exceed their topological dimensions. Functions with fractal support are not differentiable or integrable in terms of standard calculus, so we must involve local fractional derivatives. We have generalized the Cζ-calculus on the generalized Cantor sets known as middle-ξ Cantor sets. We have suggested a calculus on the middle-ξ Cantor sets for different values of ξ with 0<ξ<1. Differential equations on the middle-ξ Cantor sets have been solved, and we have presented the results using illustrative examples. The conditions for super-, normal, and sub-diffusion on fractal sets are given.

[1]  Miguel Patiño-Ortiz,et al.  Noteworthy fractal features and transport properties of Cantor tartans , 2018, Physics Letters A.

[2]  Alireza Khalili Golmankhaneh,et al.  Sub- and super-diffusion on Cantor sets: Beyond the paradox , 2018 .

[3]  A. Zhokh,et al.  Relationship between the anomalous diffusion and the fractal dimension of the environment , 2018 .

[4]  Trifce Sandev,et al.  Lévy processes on a generalized fractal comb , 2016, Fractional Dynamics in Comb-like Structures.

[5]  A. Golmankhaneh,et al.  Energy Straggling Function by Fα-Calculus , 2017 .

[6]  A. S. Fokas,et al.  Fractal analysis of tree paintings by Piet Mondrian (1872-1944) , 2017, Int. J. Arts Technol..

[7]  Cemil Tunç,et al.  On the Lipschitz condition in the fractal calculus , 2017 .

[8]  H. Kantz,et al.  Anomalous diffusion on a fractal mesh. , 2016, Physical review. E.

[9]  D. Baleanu,et al.  Non-local Integrals and Derivatives on Fractal Sets with Applications , 2017, 1701.01054.

[10]  Dumitru Baleanu,et al.  Fractal calculus involving gauge function , 2016, Commun. Nonlinear Sci. Numer. Simul..

[11]  D. Baleanu,et al.  Diffraction from fractal grating Cantor sets , 2016 .

[12]  Dumitru Baleanu,et al.  New Derivatives on the Fractal Subset of Real-Line , 2015, Entropy.

[13]  G. H. Geiger,et al.  Fick’s Law and Diffusivity of Materials , 2016 .

[14]  A. Balankin,et al.  Effective degrees of freedom of a random walk on a fractal. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  L. Gmachowski,et al.  Fractal model of anomalous diffusion , 2015, European Biophysics Journal.

[16]  Dumitru Baleanu,et al.  About Schrödinger Equation on Fractals Curves Imbedding in R3 , 2015 .

[17]  Takuma Akimoto,et al.  Anomalous diffusion in a quenched-trap model on fractal lattices. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Wilfredo Urbina,et al.  On Cantor-like sets and Cantor-Lebesgue singular functions , 2014, 1403.6554.

[19]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[20]  Kwang-Joon Koh,et al.  Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs , 2012, Imaging science in dentistry.

[21]  C. L. Martínez-González,et al.  Random walk in chemical space of Cantor dust as a paradigm of superdiffusion. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Q. Naqvi,et al.  Electromagnetic Green’s function for fractional space , 2012 .

[23]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .

[24]  Q. Naqvi,et al.  Electromagnetic Fields and Waves in Fractional Dimensional Space , 2012 .

[25]  A. D. Gangal,et al.  CALCULUS ON FRACTAL SUBSETS OF REAL LINE — II: CONJUGACY WITH ORDINARY CALCULUS , 2011 .

[26]  Qaisar Abbas Naqvi,et al.  On electromagnetic wave propagation in fractional space , 2011 .

[27]  A. Iomin Subdiffusion on a fractal comb. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[29]  Ante Graovac,et al.  WIENER WAY TO DIMENSIONALITY , 2010 .

[30]  B. Lindner Diffusion Coefficient of a Brownian Particle with a Friction Function Given by a Power Law , 2008 .

[31]  Raoul R. Nigmatullin,et al.  Section 10. Dielectric methods, theory and simulation Is there geometrical/physical meaning of the fractional integral with complex exponent? , 2005 .

[32]  A. D. Gangal,et al.  Calculus on fractal subsets of real line - I: formulation , 2003, math-ph/0310047.

[33]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[34]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[35]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Long-range correlations , 2000 .

[36]  D. Werner,et al.  The theory and design of fractal antenna arrays , 1999 .

[37]  Richard P. Taylor,et al.  Fractal analysis of Pollock's drip paintings , 1999, Nature.

[38]  M. Bujan-Nunez Scaling behaviour of Brownian motion interacting with an external field , 1998 .

[39]  R. Jain,et al.  Fractal Characteristics of Tumor Vascular Architecture During Tumor Growth and Regression , 1997, Microcirculation.

[40]  N. Cohen,et al.  Fractal antenna applications in wireless telecommunications , 1997, Professional Program Proceedings. Electronic Industries Forum of New England.

[41]  E. S. and,et al.  Diffusion Coefficients Calculated for Microporous Solids from Structural Parameters Evaluated by Fractal Geometry , 1997 .

[42]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[43]  Berk,et al.  Scale-invariant behavior and vascular network formation in normal and tumor tissue. , 1995, Physical review letters.

[44]  Chris A. Mack,et al.  Nonconstant diffusion coefficients: short description of modeling and comparison to experimental results , 1995, Advanced Lithography.

[45]  F. Tatom THE RELATIONSHIP BETWEEN FRACTIONAL CALCULUS AND FRACTALS , 1995 .

[46]  Klages,et al.  Simple maps with fractal diffusion coefficients. , 1994, Physical review letters.

[47]  Roger L. Kraft What's the Difference Between Cantor Sets? , 1994 .

[48]  F. Pansera Fractals and cancer. , 1994, Medical hypotheses.

[49]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[50]  Raymond Kapral,et al.  Diffusive dynamics in systems with translational symmetry: A one-dimensional-map model , 1982 .