Multiscale patterned transplantable stem cell patches for bone tissue regeneration.

[1]  R. Das,et al.  A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. , 2014, Biomaterials.

[2]  So Yeong Lee,et al.  Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. , 2014, Acta biomaterialia.

[3]  J. K. Leach,et al.  Concise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical Applications , 2014, Stem cells translational medicine.

[4]  KimJangho,et al.  Biologically Inspired Micro- and Nanoengineering Systems for Functional and Complex Tissues , 2014 .

[5]  H. Kim,et al.  Biologically inspired micro- and nanoengineering systems for functional and complex tissues. , 2014, Tissue engineering. Part A.

[6]  K. Suh,et al.  Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells , 2013, Scientific Reports.

[7]  Ki-Taek Lim,et al.  Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. , 2013, Biomaterials.

[8]  Choon Kiat Lim,et al.  Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. , 2013, ACS nano.

[9]  Min Sung Kim,et al.  Nanotopography-guided tissue engineering and regenerative medicine. , 2013, Advanced drug delivery reviews.

[10]  Molly M. Stevens,et al.  Designing Regenerative Biomaterial Therapies for the Clinic , 2012, Science Translational Medicine.

[11]  Ali Khademhosseini,et al.  Designing biomaterials to direct stem cell fate. , 2012, ACS nano.

[12]  Andre Levchenko,et al.  Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[13]  Rong Fan,et al.  Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. , 2012, ACS nano.

[14]  Paolo P. Provenzano,et al.  Matrix nanotopography as a regulator of cell function , 2012, The Journal of cell biology.

[15]  Alberto Redaelli,et al.  Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. , 2011, Nano letters.

[16]  Farshid Guilak,et al.  Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. , 2010, Biomaterials.

[17]  C. Thiemermann,et al.  Mesenchymal Stromal Cells: Current Understanding and Clinical Status , 2009, Stem cells.

[18]  Matthias P. Lutolf,et al.  Designing materials to direct stem-cell fate , 2009, Nature.

[19]  Kenneth R Chien,et al.  Regeneration next: toward heart stem cell therapeutics. , 2009, Cell stem cell.

[20]  M. Birch,et al.  Microfabricated grooved substrates influence cell-cell communication and osteoblast differentiation in vitro. , 2009, Tissue engineering. Part A.

[21]  Younan Xia,et al.  The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. , 2009, Biomaterials.

[22]  Ulrich H. von Andrian,et al.  Stem Cell Trafficking in Tissue Development, Growth, and Disease , 2008, Cell.

[23]  Robert Langer,et al.  A biodegradable and biocompatible gecko-inspired tissue adhesive , 2008, Proceedings of the National Academy of Sciences.

[24]  Kam W Leong,et al.  Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. , 2007, Experimental cell research.

[25]  Yun-Hoon Choung,et al.  Isolation and characterization of postnatal stem cells from human dental tissues. , 2007, Tissue engineering.

[26]  R. Kornowski,et al.  Stem Cell Therapy in Perspective , 2003, Circulation.