A fast VLSI system for computing third order cumulants

A fast concurrent system for computing third order cumulants is presented. The system consists of (q + 1)(q + 2) processing elements (PEs), where q is the maximum lag of third order cumulant sequence. A huge saving in computation time compared to sequential computation is realized. The system performance in terms of the speedup and efficiency is evaluated. The system is suitable for VLSI implementation.

[1]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[2]  A. Lohmann,et al.  Triple correlations , 1984, Proceedings of the IEEE.

[3]  Saleh A. Alshebeili,et al.  A phase reconstruction algorithm from bispectrum (seismic reflection data) , 1990 .

[4]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[5]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[6]  Kai Hwang,et al.  Computer architecture and parallel processing , 1984, McGraw-Hill Series in computer organization and architecture.

[7]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[8]  A. Murat Tekalp,et al.  Higher-order spectrum factorization in one and two dimensions with applications in signal modeling and nonminimum phase system identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Ananthram Swami,et al.  On estimating noncausal nonminimum phase ARMA models of non-Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[10]  A. Venetsanopoulos,et al.  Parameter estimation and spectral analysis of the discrete nonlinear secondorder Wiener filter (NSWF) , 1990 .

[11]  P. B. Crilly,et al.  A digital signal processing chip for iterative deconvolution restoration algorithms , 1991, [1991] Conference Record. IEEE Instrumentation and Measurement Technology Conference.

[12]  D.I. Moldovan,et al.  On the design of algorithms for VLSI systolic arrays , 1983, Proceedings of the IEEE.

[13]  Chrysostomos L. Nikias,et al.  Bispectrum estimation: A parametric approach , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  Douglas M. Patterson,et al.  Identification of the coefficients in a non-linear: time series of the quadratic type , 1985 .

[15]  T.J. Ulrych,et al.  Phase estimation using the bispectrum , 1984, Proceedings of the IEEE.

[16]  Saleh Alshebeili,et al.  A Phase Reconstruction Algorithm From Bispectrum , 1990 .

[17]  A. Enis Çetin,et al.  Cumulant based identification approaches for nonminimum phase FIR systems , 1993, IEEE Trans. Signal Process..

[18]  K. Dharmarajan,et al.  Parallel VLSI algorithm for stable inversion of dense matrices , 1989 .

[19]  Anastasios N. Venetsanopoulos,et al.  An adaptive system identification method based on bispectrum , 1991 .