Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms

ABSTRACT Path integration is a navigational strategy that gives an animal an estimate of its position relative to some starting point. For many decades, ingenious and probing behavioural experiments have been the only window onto the operation of path integration in arthropods. New methods have now made it possible to visualise the activity of neural circuits in Drosophila while they fly or walk in virtual reality. Studies of this kind, as well as electrophysiological recordings from single neurons in the brains of other insects, are revealing details of the neural mechanisms that control an insect's direction of travel and other aspects of path integration. The aim here is first to review the major features of path integration in foraging desert ants and honeybees, the current champion path integrators of the insect world, and second consider how the elaborate behaviour of these insects might be accommodated within the framework of the newly understood neural circuits. The discussion focuses particularly on the ability of ants and honeybees to use a celestial compass to give direction in Earth-based coordinates, and of honeybees to use a landscape panorama to provide directional guidance for path integration. The possibility is raised that well-ordered behaviour might in some cases substitute for complex circuitry. Summary: This Review considers how the complexities of the honeybee waggle dance and ant path integration during foraging might provide additional constraints when modelling path integration and its underlying neural mechanisms.

[1]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[2]  Matthew Collett,et al.  How desert ants use a visual landmark for guidance along a habitual route , 2010, Proceedings of the National Academy of Sciences.

[3]  Rüdiger Wehner,et al.  Path Integration in Desert Ants Controls Aggressiveness , 2004, Science.

[4]  Markus Knaden,et al.  Egocentric and geocentric navigation during extremely long foraging paths of desert ants , 2015, Journal of Comparative Physiology A.

[5]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[6]  Fukushi,et al.  Optical scaling in conspecific Cataglyphis ants , 1995, The Journal of experimental biology.

[7]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[8]  Barbara Webb,et al.  The internal maps of insects , 2019, Journal of Experimental Biology.

[9]  Michael H Dickinson,et al.  Death Valley, Drosophila, and the Devonian toolkit. , 2014, Annual review of entomology.

[10]  Rüdiger Wehner,et al.  Ant navigation: resetting the path integrator , 2006, Journal of Experimental Biology.

[11]  B. Webb,et al.  Optimal cue integration in ants , 2015, Proceedings of the Royal Society B: Biological Sciences.

[12]  Francesco Savelli,et al.  Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions , 2019, Journal of Experimental Biology.

[13]  Michael H. Dickinson,et al.  Celestial navigation in Drosophila , 2019, Journal of Experimental Biology.

[14]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[15]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[16]  Uwe Homberg,et al.  Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. , 2015, Journal of neurophysiology.

[17]  R. Dolan,et al.  Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Distance Estimation , 2014, Computer Vision, A Reference Guide.

[19]  Fred C. Dyer,et al.  Memory and sun compensation by honey bees , 1987, Journal of Comparative Physiology A.

[20]  Matthias Wittlinger,et al.  How to find home backwards? Navigation during rearward homing of Cataglyphis fortis desert ants , 2016, Journal of Experimental Biology.

[21]  T. Collett,et al.  Calibration of vector navigation in desert ants , 1999, Current Biology.

[22]  William F. Towne,et al.  Honey Bees Fail To Update Their Solar Ephemerides After a Displacement , 1998, Naturwissenschaften.

[23]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[24]  Uwe Homberg,et al.  Integration of celestial compass cues in the central complex of the locust brain , 2018, Journal of Experimental Biology.

[25]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[26]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[27]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[28]  Shaowu Zhang,et al.  Honeybee dances communicate distances measured by optic flow , 2001, Nature.

[29]  J. Rosenheim Host location and exploitation by the cleptoparasitic wasp Argochrysis armilla: the role of learning (Hymenoptera: Chrysididae) , 1987, Behavioral Ecology and Sociobiology.

[30]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[31]  R. Ritzmann,et al.  Central-Complex Control of Movement in the Freely Walking Cockroach , 2015, Current Biology.

[32]  Michael H. Dickinson,et al.  Diverse food-sensing neurons trigger idiothetic local search in Drosophila , 2018 .

[33]  R. Wehner,et al.  The desert ant odometer: a stride integrator that accounts for stride length and walking speed , 2007, Journal of Experimental Biology.

[34]  M Collett,et al.  Do familiar landmarks reset the global path integration system of desert ants? , 2003, Journal of Experimental Biology.

[35]  R. Wehner,et al.  Calibration processes in desert ant navigation: vector courses and systematic search , 2002, Journal of Comparative Physiology A.

[36]  H. A. McCartney,et al.  Compensation for wind drift by bumble-bees , 1999, Nature.

[37]  Takashi Kawai,et al.  Turn alternation in the pill bug: (Armadillidium vulgare) , 2010 .

[38]  Ken Cheng,et al.  Behavioral ecology of odometric memories in desert ants: acquisition, retention, and integration , 2006 .

[39]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[40]  J. L. Williams,et al.  Anatomical studies of the insect central nervous system: A ground‐plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera) , 2009 .

[41]  Angelique C Paulk,et al.  Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. , 2008, Arthropod structure & development.

[42]  Francis L. W. Ratnieks,et al.  Incorporating variability in honey bee waggle dance decoding improves the mapping of communicated resource locations , 2013, Journal of Comparative Physiology A.

[43]  Fei Peng,et al.  Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments , 2016, PLoS Comput. Biol..

[44]  T. Seeley,et al.  FORAGING STRATEGY OF HONEYBEE COLONIES IN A TEMPERATE DECIDUOUS FOREST , 1982 .

[45]  H. Nalbach,et al.  Visual stabilization in arthropods. , 1993, Reviews of oculomotor research.

[46]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[48]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[49]  B. Webb,et al.  Neural mechanisms of insect navigation. , 2016, Current opinion in insect science.

[50]  H. Wolf,et al.  What counts for ants? How return behaviour and food search of Cataglyphis ants are modified by variations in food quantity and experience , 2012, Journal of Experimental Biology.

[51]  M. Collett How Navigational Guidance Systems Are Combined in a Desert Ant , 2012, Current Biology.

[52]  Holger G. Krapp,et al.  Spike Burst Coding of Translatory Optic Flow and Depth from Motion in the Fly Visual System , 2017, Current Biology.

[53]  R. Wehner,et al.  Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis , 1997, Journal of Comparative Physiology A.

[54]  Thierry Hoinville,et al.  Steering intermediate courses: desert ants combine information from various navigational routines , 2016, Journal of Comparative Physiology A.

[55]  R. Hetherington The Perception of the Visual World , 1952 .

[56]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[57]  Js Jones,et al.  Long-Distance Migration of Drosophila , 1982, The American Naturalist.

[58]  Matthias Wittlinger,et al.  Two distance memories in desert ants—Modes of interaction , 2018, PloS one.

[59]  Matthias Wittlinger,et al.  Optic flow odometry operates independently of stride integration in carried ants , 2016, Science.

[60]  Rüdiger Wehner,et al.  The Geomagnetic Field Is a Compass Cue in Cataglyphis Ant Navigation , 2018, Current Biology.

[61]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[62]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[63]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[64]  Jan Wessnitzer,et al.  Evolving a Neural Model of Insect Path Integration , 2007, Adapt. Behav..

[65]  F. Dyer,et al.  Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Burger Zum Mechanismus der Gegenwendung nach mechanisch aufgezwungener Richtungsänderung bei Schizophyllum sabulosum (Julidae, Diplopoda) , 1971, Zeitschrift für vergleichende Physiologie.

[67]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[68]  B. Ronacher,et al.  Distance estimation in the third dimension in desert ants , 2002, Journal of Comparative Physiology A.

[69]  R. Kaartinen,et al.  A parasitoid wasp uses landmarks while monitoring potential resources , 2008, Proceedings of the Royal Society B: Biological Sciences.

[70]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[71]  M Heisenberg,et al.  Behavior‐dependent activity labeling in the central complex of Drosophila during controlled visual stimulation , 1994, The Journal of comparative neurology.

[72]  Fred C. Dyer,et al.  Motivation and vector navigation in honey bees , 2002, Naturwissenschaften.

[73]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[74]  Allen Cheung,et al.  Principles of Insect Path Integration , 2018, Current Biology.

[75]  M Heisenberg,et al.  THE CENTRAL COMPLEX OF DROSOPHILA MELANOGASTER IS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENE ELLIPSOID BODY OPEN , 1994, Journal of neurogenetics.

[76]  Anna Honkanen,et al.  The insect central complex and the neural basis of navigational strategies , 2019, Journal of Experimental Biology.

[77]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly , 2013, The Journal of comparative neurology.

[78]  Thierry Hoinville,et al.  Optimal multiguidance integration in insect navigation , 2018, Proceedings of the National Academy of Sciences.

[79]  N. Franceschini,et al.  Honeybees change their height to restore their optic flow , 2010, Journal of Comparative Physiology A.

[80]  Bernhard Ronacher,et al.  The polarization compass dominates over idiothetic cues in path integration of desert ants , 2012, Journal of Experimental Biology.

[81]  Markus Knaden,et al.  Path Integration Controls Nest-Plume Following in Desert Ants , 2012, Current Biology.

[82]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[83]  T. Collett,et al.  Visual landmarks and route following in desert ants , 1992, Journal of Comparative Physiology A.

[84]  R. Wehner,et al.  How do ants acquire their celestial ephemeris function? , 2005, Naturwissenschaften.

[85]  F. Ratnieks,et al.  Long-range foraging by the honey-bee, Apis mellifera L. , 2000 .

[86]  Thomas S. Collett,et al.  How does the insect central complex use mushroom body output for steering? , 2018, Current Biology.

[87]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[88]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[89]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[90]  S. Farris,et al.  Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects , 2011, Proceedings of the Royal Society B: Biological Sciences.

[91]  Matthew Collett,et al.  Local and global navigational coordinate systems in desert ants , 2009, Journal of Experimental Biology.

[92]  M. Lindauer Communication Among Social Bees , 1961 .

[93]  William F. Towne,et al.  The spatial precision of the honey bees' dance communication , 1988, Journal of Insect Behavior.

[94]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[95]  Stanley Heinze,et al.  Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly , 2014 .

[96]  Barbara Webb,et al.  The Central Complex as a Potential Substrate for Vector Based Navigation , 2019, Front. Psychol..

[97]  Rüdiger Wehner,et al.  Nest mark orientation in desert ants Cataglyphis: what does it do to the path integrator? , 2005, Animal Behaviour.

[98]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[99]  Rüdiger Wehner,et al.  Vector navigation in desert ants, Cataglyphis fortis: celestial compass cues are essential for the proper use of distance information , 2005, Naturwissenschaften.

[100]  Rüdiger Wehner,et al.  The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies , 2017, Front. Behav. Neurosci..

[101]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[102]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[103]  Patrick Schultheiss,et al.  Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti , 2011, Animal Behaviour.

[104]  H. Dingle Turn alternation by bugs on causeways as a delayed compensatory response and the effects of varying visual inputs and length of straight path , 1965 .

[105]  Helmut Schwegler,et al.  Path integration — a network model , 1995, Biological Cybernetics.

[106]  R. Wehner,et al.  Uncertainty about nest position influences systematic search strategies in desert ants , 2006, Journal of Experimental Biology.

[107]  T. S. Collett,et al.  How desert ants cope with enforced detours on their way home , 1992, Journal of Comparative Physiology A.

[108]  Rüdiger Wehner,et al.  What do the ants know about the rotation of the sky? , 1981, Nature.

[109]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[110]  Andrew Philippides,et al.  Acquisition and expression of memories of distance and direction in navigating wood ants , 2015, Journal of Experimental Biology.

[111]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[112]  Thomas S. Collett,et al.  How do insects use path integration for their navigation? , 2000, Biological Cybernetics.

[113]  William F. Towne,et al.  The connection between landscapes and the solar ephemeris in honeybees , 2008, Journal of Experimental Biology.

[114]  Allen Cheung,et al.  Animal navigation: the difficulty of moving in a straight line , 2007, Biological Cybernetics.

[115]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[116]  Andrew Philippides,et al.  A Model of Ant Route Navigation Driven by Scene Familiarity , 2012, PLoS Comput. Biol..

[117]  B. Webb,et al.  How Ants Use Vision When Homing Backward , 2017, Current Biology.

[118]  H. Dingle Further observations on correcting behaviour in boxelder bugs , 1964 .