Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators

A general interface procedure is presented for multi-domain collocation methods satisfying the summation-by-parts (SBP) spatial discretization convention. Unlike more traditional operators (e.g. FEM) applied to the advection-diffusion equation, the new procedure penalizes the solution and the first p derivatives across the interface. The combined interior/interface operators are proven to be pointwise stable, and conservative, although accuracy deteriorates for p≥2. Penalties between two different sets of variables are compared (motivated by FEM primal and flux formulations), and are shown to be equivalent for certain choices of penalty parameters. Extensive validation studies are presented using two classes of high-order SBP operators: (1) central finite difference, and (2) Legendre spectral collocation.

[1]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[2]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions , 1996, SIAM J. Sci. Comput..

[3]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[4]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[5]  Jan Nordström,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[6]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[7]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[8]  Nail K. Yamaleev,et al.  Third-order Energy Stable WENO scheme , 2008, J. Comput. Phys..

[9]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[10]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[11]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[12]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[13]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[14]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[15]  David Gottlieb,et al.  CONVERGENCE RESULTS FOR PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC SYSTEMS BY A PENALTY-TYPE BOUNDARY TREATMENT , 1991 .

[16]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[17]  Alina Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes , 2000 .

[18]  Bo Strand,et al.  High-Order Difference Approximations for Hyperbolic Initial Boundary Value Problems , 1996 .

[19]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[20]  F. Yuan,et al.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) , 1999 .

[21]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[22]  Jan Nordström,et al.  High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..

[23]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[24]  M. Pursley Report Documentation Page Form Approved Omb No. 0704-0188 Please Do Not Return Your Form to the above Address. 1. Report Date (dd-mm-yyyy) Final Technical Report Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks Onr , 2007 .

[25]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[26]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[27]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[28]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[29]  A. Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, II , 2000 .

[30]  Daniele,et al.  CONVERGENCE RESULTS FOR PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC SYSTEMS BY A PENALTY TYPE BOUNDARY TREATMENT , 1991 .

[31]  Stefan Johansson,et al.  Strictly stable high order difference approximations for computational aeroacoustics , 2005 .

[32]  Chi-Wang Shu,et al.  Different Formulations Of The Discontinuous Galerkin Method For The Viscous Terms , 2000 .

[33]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[34]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[35]  Mark H. Carpenter,et al.  High-Order Cyclo-Difference Techniques , 1995 .

[36]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[37]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[38]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[39]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[40]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[41]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[42]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[43]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[44]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[45]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: II. One-Dimensional Domain Decomposition Schemes , 1997, SIAM J. Sci. Comput..

[46]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[47]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[48]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[49]  David Gottlieb,et al.  Spectral Methods on Arbitrary Grids , 1995 .