Spike-and-Slab Meets LASSO: A Review of the Spike-and-Slab LASSO

High-dimensional data sets have become ubiquitous in the past few decades, often with many more covariates than observations. In the frequentist setting, penalized likelihood methods are the most popular approach for variable election and estimation in high-dimensional data. In the Bayesian framework, spike-and-slab methods are commonly used as probabilistic constructs for high-dimensional modeling. Within the context of univariate linear regression, Rockova and George (2018) introduced the spike-and-slab LASSO (SSL), an approach based on a prior which forms a continuum between the penalized likelihood LASSO and the Bayesian point-mass spike-and-slab formulations. Since its inception, the spike-and-slab LASSO has been extended to a variety of contexts, including generalized linear models, factor analysis, graphical models, and nonparametric regression. The goal of this paper is to survey the landscape surrounding spike-and-slab LASSO methodology. First we elucidate the attractive properties and the computational tractability of SSL priors in high dimensions. We then review methodological developments of the SSL and outline several theoretical developments. We illustrate the methodology on both simulated and real datasets.

[1]  Edward I. George,et al.  Spike-and-slab Lasso biclustering , 2021 .

[2]  Malay Ghosh,et al.  On the Beta Prime Prior for Scale Parameters in High-Dimensional Bayesian Regression Models , 2018, Statistica Sinica.

[3]  Chao Gao,et al.  Bayesian Model Selection with Graph Structured Sparsity , 2019, J. Mach. Learn. Res..

[4]  Anirban Bhattacharya,et al.  Scalable Approximate MCMC Algorithms for the Horseshoe Prior , 2020, J. Mach. Learn. Res..

[5]  M. Bogdan,et al.  Adaptive Bayesian SLOPE -- High-dimensional Model Selection with Missing Values , 2019, 1909.06631.

[6]  Yong Chen,et al.  Fast Algorithms and Theory for High-Dimensional Bayesian Varying Coefficient Models , 2019, 1907.06477.

[7]  Kolyan Ray,et al.  Variational Bayes for High-Dimensional Linear Regression With Sparse Priors , 2019, Journal of the American Statistical Association.

[8]  Nengjun Yi,et al.  Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information , 2019, BMC Bioinformatics.

[9]  Samuel J. Clark,et al.  Bayesian Joint Spike-and-Slab Graphical Lasso , 2018, ICML.

[10]  Gemma E. Moran,et al.  Variance Prior Forms for High-Dimensional Bayesian Variable Selection , 2018, Bayesian Analysis.

[11]  Sameer K. Deshpande,et al.  Simultaneous Variable and Covariance Selection With the Multivariate Spike-and-Slab LASSO , 2017, Journal of Computational and Graphical Statistics.

[12]  Nicholas G. Polson,et al.  Lasso Meets Horseshoe: A Survey , 2017, Statistical Science.

[13]  G. Parmigiani,et al.  High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors. , 2017, Bayesian analysis.

[14]  Peter A. Calabresi,et al.  Spike and-Slab Group LASSOs for Grouped Regression and Sparse Generalized Additive Models , 2019 .

[15]  Naveennaidu Narisetty,et al.  Skinny Gibbs: A Consistent and Scalable Gibbs Sampler for Model Selection , 2018, Journal of the American Statistical Association.

[16]  Feng Liang,et al.  Bayesian Regularization for Graphical Models With Unequal Shrinkage , 2018, Journal of the American Statistical Association.

[17]  Nengjun Yi,et al.  Group spike‐and‐slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway information , 2018, Bioinform..

[18]  V. Rocková,et al.  Bayesian estimation of sparse signals with a continuous spike-and-slab prior , 2018 .

[19]  I. Castillo,et al.  Empirical Bayes analysis of spike and slab posterior distributions , 2018, 1801.01696.

[20]  E. George,et al.  The Spike-and-Slab LASSO , 2018 .

[21]  Lei Sun,et al.  Bayesian l 0 ‐regularized least squares , 2017, Applied Stochastic Models in Business and Industry.

[22]  Adel Javanmard,et al.  Debiasing the lasso: Optimal sample size for Gaussian designs , 2015, The Annals of Statistics.

[23]  Nengjun Yi,et al.  The spike‐and‐slab lasso Cox model for survival prediction and associated genes detection , 2017, Bioinform..

[24]  汤在祥 Group spike-and-slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway , 2017 .

[25]  Xinyan Zhang,et al.  The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection , 2016, Genetics.

[26]  E. George,et al.  Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity , 2016 .

[27]  B. Mallick,et al.  Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. , 2015, Biometrika.

[28]  Veronika Rockova,et al.  Bayesian Penalty Mixing: The Case of a Non-separable Penalty , 2016 .

[29]  Weijie J. Su,et al.  SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION. , 2014, The annals of applied statistics.

[30]  A. V. D. Vaart,et al.  BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.

[31]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[32]  N. Narisetty,et al.  Bayesian variable selection with shrinking and diffusing priors , 2014, 1405.6545.

[33]  Veronika Rockova,et al.  EMVS: The EM Approach to Bayesian Variable Selection , 2014 .

[34]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[35]  Malay Ghosh,et al.  Asymptotic Properties of Bayes Risk of a General Class of Shrinkage Priors in Multiple Hypothesis Testing Under Sparsity , 2013, 1310.7462.

[36]  Jaeyong Lee,et al.  GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.

[37]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[38]  T. Hastie,et al.  SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.

[39]  Tong Zhang,et al.  A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems , 2011, 1108.4988.

[40]  Cun-Hui Zhang,et al.  Scaled sparse linear regression , 2011, 1104.4595.

[41]  Thomas L. Griffiths,et al.  The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..

[42]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.

[43]  James G. Scott,et al.  Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.

[44]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[45]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[46]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[47]  Sylvia Richardson,et al.  Evolutionary Stochastic Search for Bayesian model exploration , 2010, 1002.2706.

[48]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[49]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[50]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[51]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[52]  M. West,et al.  Shotgun Stochastic Search for “Large p” Regression , 2007 .

[53]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[54]  V. Sheffield,et al.  Regulation of gene expression in the mammalian eye and its relevance to eye disease , 2006, Proceedings of the National Academy of Sciences.

[55]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[56]  Thomas L Casavant,et al.  Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[58]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[59]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[60]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[61]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[62]  Jun Yan Survival Analysis: Techniques for Censored and Truncated Data , 2004 .

[63]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[64]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[65]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[66]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[67]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[68]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[69]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[70]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[71]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[72]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[73]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[74]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.