Chromium isotopes in marine hydrothermal sediments

[1]  R. Lincoln chemical speciation , 2020, Catalysis from A to Z.

[2]  Tianyu Chen,et al.  Marine ferromanganese oxide: A potentially important sink of light chromium isotopes? , 2018, Chemical Geology.

[3]  S. Crowe,et al.  Chromium isotope fractionation in ferruginous sediments , 2018 .

[4]  Yuanzhi Tang,et al.  Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution , 2017, Nature Communications.

[5]  N. Planavsky,et al.  Chromium isotope systematics in the Connecticut River , 2017 .

[6]  N. Planavsky,et al.  Chromium isotopic composition of core‐top planktonic foraminifera , 2017, Geobiology.

[7]  M. Babechuk,et al.  Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol , 2017, Geobiology.

[8]  P. Chernyavskiy,et al.  The Cr-isotope signature of surface seawater — A global perspective , 2016 .

[9]  R. Frei,et al.  Processes controlling the chromium isotopic composition of river water: Constraints from basaltic river catchments , 2016 .

[10]  A. Jacobson,et al.  Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway , 2016 .

[11]  R. Coleman,et al.  Anoxic oxidation of chromium , 2016 .

[12]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[13]  L. Peterson,et al.  The chromium isotope composition of reducing and oxic marine sediments , 2016 .

[14]  K. Maher,et al.  Chromium fluxes and speciation in ultramafic catchments and global rivers , 2016 .

[15]  B. Peucker‐Ehrenbrink,et al.  Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration , 2016 .

[16]  C. Holmden,et al.  Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples , 2015 .

[17]  M. Pimentel,et al.  Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence , 2015 .

[18]  W. Fischer,et al.  The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin , 2014 .

[19]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[20]  V. Chrastný,et al.  Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time , 2013 .

[21]  D. Connelly,et al.  The chromium isotopic composition of seawater and marine carbonates , 2013 .

[22]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[23]  A. Bekker,et al.  Proterozoic ocean redox and biogeochemical stasis , 2013, Proceedings of the National Academy of Sciences.

[24]  T. Johnson,et al.  Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules , 2012 .

[25]  A. Basu,et al.  Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. , 2012, Environmental science & technology.

[26]  R. Frei,et al.  Chromium isotopes in carbonates — A tracer for climate change and for reconstructing the redox state of ancient seawater , 2011 .

[27]  A. Bekker,et al.  Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event , 2011, Nature.

[28]  S. Stipp,et al.  Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments , 2011 .

[29]  M. Staubwasser,et al.  Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media , 2010 .

[30]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[31]  T. Johnson,et al.  Microbial mass-dependent fractionation of chromium isotopes , 2008 .

[32]  F. Blanckenburg,et al.  The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS , 2008 .

[33]  A. Wood,et al.  Speciation of Cr(III) and Cr(VI) in surface waters with a Chelex-100 resin column and their quantitative determination using inductively coupled plasma mass spectrometry and instrumental neutron activation analysis , 2007 .

[34]  Scott Fendorf,et al.  Genesis of hexavalent chromium from natural sources in soil and groundwater , 2007, Proceedings of the National Academy of Sciences.

[35]  Yuanzhi Tang,et al.  Coprecipitation of chromate with calcite: Batch experiments and X-ray absorption spectroscopy , 2007 .

[36]  D. Canfield,et al.  Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations , 2006 .

[37]  R. Kretzschmar,et al.  Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of Goethite. , 2006, Environmental science & technology.

[38]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[39]  G. Bourrié,et al.  Improved methods for selective dissolution of manganese oxides from soils and rocks , 2004 .

[40]  R. Aller,et al.  Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage , 2004 .

[41]  A. Koschinsky,et al.  Redox speciation of chromium in the oceanic water column of the Lesser Antilles and offshore Otago Peninsula, New Zealand , 2003 .

[42]  A. Ellis,et al.  Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment , 2002, Science.

[43]  J. Kramers,et al.  Determination of molybdenum isotope fractionation by double‐spike multicollector inductively coupled plasma mass spectrometry , 2001 .

[44]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[45]  A. Koschinsky,et al.  Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin , 2000 .

[46]  C. German,et al.  Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise , 1999 .

[47]  J. Auzende,et al.  Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity , 1996 .

[48]  E. Baker,et al.  Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise , 1996 .

[49]  S. Fendorf Surface reactions of chromium in soils and waters , 1995 .

[50]  B. Jørgensen,et al.  Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark , 1994 .

[51]  M. D. Rudnicki,et al.  A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge , 1993 .

[52]  L. Charlet,et al.  X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface , 1992 .

[53]  R. Jahnke,et al.  Early diagenesis in differing depositional environments: The response of transition metals in pore water , 1990 .

[54]  J. Zachara,et al.  Environmental chemistry of chromium. , 1989, The Science of the total environment.

[55]  J. Dymond,et al.  Plume dispersed hydrothermal particles: A time-series record of settling flux from the Endeavour Ridge using moored sensors , 1988 .

[56]  J. Trefry,et al.  Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N , 1988 .

[57]  L. Eary,et al.  Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide , 1987 .

[58]  T. Barrett,et al.  Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect , 1987 .

[59]  M. Lyle Major Element Composition of Leg 92 Sediments , 1986 .

[60]  D. Rea,et al.  Neogene history of the south Pacific tradewinds: Evidence for hemispherical asymmetry of atmospheric circulation , 1986 .

[61]  C. Jeandel,et al.  Isotope dilution measurement of inorganic chromium(III) and total chromium in seawater , 1984 .

[62]  U. Schwertmann,et al.  Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite , 1983 .

[63]  E. Nakayama,et al.  Chemical speciation of chromium in sea water: Part 2. Effects of Manganese Oxides and Reducible Organic Materials on the Redox Processes of Chromium , 1981 .

[64]  James A. Davis,et al.  Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions , 1980 .

[65]  Jack Dymond,et al.  Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate , 1977 .

[66]  G. Lee,et al.  Potential transformations of chromium in natural waters , 1975 .

[67]  T. Chao Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride , 1972 .

[68]  Linda C. Kah,et al.  Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates , 2016 .

[69]  A. Berger,et al.  The fate of chromium during tropical weathering: A laterite profile from Central Madagascar , 2014 .

[70]  A. Polat,et al.  Chromium isotope fractionation during oxidative weathering—Implications from the study of a Paleoproterozoic (ca. 1.9Ga) paleosol, Schreiber Beach, Ontario, Canada , 2013 .

[71]  R. Coleman,et al.  Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California , 2004 .