Categories of relations as models of quantum theory

Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspondence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal’cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quantum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

[1]  Aleks Kissinger,et al.  Compositional Quantum Logic , 2013, Computation, Logic, Games, and Quantum Foundations.

[2]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[3]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[4]  Prakash Panangaden,et al.  Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky , 2013, Lecture Notes in Computer Science.

[5]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[6]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[7]  Aaron D. Lauda,et al.  Higher-Dimensional Algebra V: 2-Groups , 2003 .

[8]  Bill Edwards,et al.  Toy quantum categories , 2008, 0808.1037.

[9]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[10]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[11]  Jeffrey Colin Morton,et al.  Two-Vector Spaces and Groupoids , 2008, Appl. Categorical Struct..

[12]  Carsten Butz Regular Categories and Regular Logic , 1998 .

[13]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[14]  John C. Baez,et al.  Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.

[15]  Ronald Brown Groupoids and crossed objects in algebraic topology , 1999 .

[16]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[17]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[18]  Aleks Kissinger,et al.  Can quantum theory be characterized in information-theoretic terms? , 2016, ArXiv.

[19]  Aaron D. Wyner,et al.  Analogue of the Vernam System for Continuous Time SeriesBell Laboratories Memorandum, May 10, 1943. , 1993 .

[20]  Peter Selinger,et al.  Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.

[21]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[22]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory , 2012 .

[23]  J. Baez Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.

[24]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[25]  Jamie Vicary,et al.  Bicategorical Semantics for Nondeterministic Computation , 2013, MFPS.

[26]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.