暂无分享,去创建一个
[1] Aleks Kissinger,et al. Compositional Quantum Logic , 2013, Computation, Logic, Games, and Quantum Foundations.
[2] Andre Scedrov,et al. Categories, allegories , 1990, North-Holland mathematical library.
[3] Chris Heunen,et al. Relative Frobenius algebras are groupoids , 2011, 1112.1284.
[4] Prakash Panangaden,et al. Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky , 2013, Lecture Notes in Computer Science.
[5] J. Vicary. Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.
[6] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[7] Aaron D. Lauda,et al. Higher-Dimensional Algebra V: 2-Groups , 2003 .
[8] Bill Edwards,et al. Toy quantum categories , 2008, 0808.1037.
[9] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[10] Aleks Kissinger,et al. Categories of quantum and classical channels , 2016, Quantum Inf. Process..
[11] Jeffrey Colin Morton,et al. Two-Vector Spaces and Groupoids , 2008, Appl. Categorical Struct..
[12] Carsten Butz. Regular Categories and Regular Logic , 1998 .
[13] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[14] John C. Baez,et al. Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.
[15] Ronald Brown. Groupoids and crossed objects in algebraic topology , 1999 .
[16] A. Carboni,et al. Cartesian bicategories I , 1987 .
[17] Schumacher,et al. Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.
[18] Aleks Kissinger,et al. Can quantum theory be characterized in information-theoretic terms? , 2016, ArXiv.
[19] Aaron D. Wyner,et al. Analogue of the Vernam System for Continuous Time SeriesBell Laboratories Memorandum, May 10, 1943. , 1993 .
[20] Peter Selinger,et al. Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.
[21] H. Barnum,et al. Generalized no-broadcasting theorem. , 2007, Physical review letters.
[22] T. Heinosaari,et al. The Mathematical Language of Quantum Theory , 2012 .
[23] J. Baez. Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.
[24] Filippo Bonchi,et al. A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.
[25] Jamie Vicary,et al. Bicategorical Semantics for Nondeterministic Computation , 2013, MFPS.
[26] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.