Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining

Surface integrity of parts can seriously be damaged by mechanical and thermal loads during machining leading to crack initiation, constraining of parts or damage. At present, it is very difficult to observe the diverse nanoscale physical phenomena occurring through experiments due to in-process measurement problems, inaccessible contact area of tool and workpiece, and the difficulty of surface analysis at this range. Therefore, more insight is needed, which on the long run will help to achieve high precision manufacturing with predictability, repeatability, and productivity. The most logical method presently is to explore available simulation techniques. Of the many methods of simulation, atomistic simulation methods have proven to be suitable techniques for modeling at the nanoscale. Molecular dynamics (MD) is a comprehensive physical model that contains inherent information such as geometry, velocities, and forces which can be used to derive others like energy, temperature, and stresses, thereby providing support to a wider range of engineering problems such as simulations of ductile and brittle materials. This paper is aimed at reviewing journals on the use of classical MD method (corroborating it with experimental findings) for nanoscale machining of silicon with references to its use in nanomachining of other metals when necessary.

[1]  H. Lee,et al.  Large scale molecular dynamics study of nanometric machining of copper , 2007 .

[2]  Ralf Drautz,et al.  Valence-dependent analytic bond-order potential for transition metals , 2006 .

[3]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[4]  Robert Lewis Reuben,et al.  Diamond machining of silicon: A review of advances in molecular dynamics simulation , 2015 .

[5]  Nakasuji Tomoaki,et al.  Diamond Turning of Brittle Materials for Optical Components , 1990 .

[6]  Mark J. Jackson,et al.  Machining of Brittle Materials Using Nanostructured Diamond Tools , 2015 .

[7]  I. Jenei,et al.  Scanning electron microscopy (SEM) analysis of tribofilms enhanced by fullerene-like nanoparticles , 2012 .

[8]  H. Chandrasekaran,et al.  Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel , 2004 .

[9]  Tei-Chen Chen,et al.  A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation , 2008 .

[10]  Kurt Nassau,et al.  The history and present status of synthetic diamond , 1979 .

[11]  Sandy To,et al.  Machinability of Single Crystals in Diamond Turning , 2018 .

[12]  A. Kovalchenko,et al.  On the cracks self-healing mechanism at ductile mode cutting of silicon , 2014 .

[13]  Hiroaki Tanaka,et al.  An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning , 1991 .

[14]  Yung C. Shin,et al.  Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage , 2008 .

[15]  Xichun Luo,et al.  Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting , 2015 .

[16]  Rui-Qin Zhang,et al.  Anomalous effect of hydrogenation on phonon thermal conductivity in thin silicon nanowires , 2014 .

[17]  Xiangqian Jiang,et al.  An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools , 2014 .

[18]  Jun Shimizu,et al.  Molecular dynamics simulation of friction on the atomic scale , 1998 .

[19]  Giovanni Ciccotti,et al.  Dynamical Non-Equilibrium Molecular Dynamics , 2013, Entropy.

[20]  D. Lucca,et al.  Surfaces in Precision Engineering, Microengineering and Nanotechnology , 2003 .

[21]  Tarek Mabrouki,et al.  Some insights on the modelling of chip formation and its morphology during metal cutting operations , 2016 .

[22]  Peter Gumbsch,et al.  Anisotropic mechanical amorphization drives wear in diamond. , 2011, Nature materials.

[23]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[24]  Alexander Stukowski,et al.  Influence of microstructure on the cutting behaviour of silicon , 2016 .

[25]  K. Ehmann,et al.  Rotary spatial vibration-assisted diamond cutting of brittle materials , 2016 .

[26]  Hung T. Diep,et al.  Thermal stability of standalone silicene sheet , 2013, 1309.3828.

[27]  Kun Sun,et al.  Phase transformations of mono-crystal silicon induced by two-body and three-body abrasion in nanoscale , 2014 .

[28]  Chi Fai Cheung,et al.  Molecular dynamics analysis of the effect of surface flaws of diamond tools on tool wear in nanometric cutting , 2017 .

[29]  Yung C. Shin,et al.  Modeling of machining of composite materials: A review , 2012 .

[30]  R. Reuben,et al.  Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process , 2013 .

[31]  Sabri Cetinkunt,et al.  Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon , 2001 .

[32]  Stephen C. Veldhuis,et al.  Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium , 2012 .

[33]  Fengzhou Fang,et al.  Modelling and experimental investigation on nanometric cutting of monocrystalline silicon , 2005 .

[34]  Fei Qin,et al.  Molecular dynamics simulation on subsurface damage layer during nano grinding process of silicon wafer , 2017, 2017 18th International Conference on Electronic Packaging Technology (ICEPT).

[35]  S. To,et al.  A review of surface roughness generation in ultra-precision machining , 2015 .

[36]  A. Senthil Kumar,et al.  A review on the current research trends in ductile regime machining , 2012 .

[37]  John Dell,et al.  Nanoscratch-induced phase transformation of monocrystalline Si , 2010 .

[38]  Nouredine Ouelaa,et al.  Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool , 2012 .

[39]  Jaime Gilberto Duduch,et al.  The influence of crystallographic orientation on the generation of multiple structural phases generation in Silicon by cyclic microindentation , 2008 .

[40]  Ning Yang,et al.  A study of the ultra-precision truing method for flank face of round nose diamond cutting tool , 2017 .

[41]  Martin L. Dunn,et al.  Atomistic simulations of the yielding of gold nanowires , 2004 .

[42]  Mahmudur Rahman,et al.  A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials , 2013 .

[43]  Hazim El-Mounayri,et al.  MOLECULAR DYNAMICS SIMULATION OF NANOMETRIC CUTTING , 2010 .

[44]  Hongwei Zhao,et al.  A study on the surface quality and brittle–ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations , 2017 .

[45]  Eun-Ha Kim,et al.  The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations , 2010 .

[46]  T. Otieno,et al.  Surface roughness when diamond turning RSA 905 optical aluminium , 2015, SPIE Optical Engineering + Applications.

[47]  Siqi Li,et al.  Unification of Two Different Melting Mechanisms of Nanovoids , 2015 .

[48]  Devi Shanker Misra,et al.  Delamination/Rupture of Polycrystalline Diamond Film: Defining Role of Shear Anisotropy , 2017 .

[49]  Khaled Abou-El-Hossein,et al.  Ultra-precision diamond turning of optical silicon—a review , 2018 .

[50]  Mahmudur Rahman,et al.  A study on the effect of tool-edge radius on critical machining characteristics in ultra-precision milling of tungsten carbide , 2013 .

[51]  D. L. Decker,et al.  Tribological Considerations Of The Diamond Single-Point Tool , 1984, Optics & Photonics.

[52]  Li Quan Wang,et al.  Atomics Simulation of Cutting Velocity Dependency in AFM-Based Nanomachining Process , 2011 .

[53]  Jing Shi,et al.  Tool/Chip Interfacial Friction Analysis in Atomistic Machining of Polycrystalline Coppers , 2014 .

[54]  J. Oomen,et al.  Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals , 1992 .

[55]  Susan B. Sinnott,et al.  Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions , 2012 .

[56]  Paul Shore,et al.  3D characterisation of tool wear whilst diamond turning silicon , 2007 .

[57]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[58]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[59]  Sandy To,et al.  Diamond tool wear in ultra-precision machining , 2017 .

[60]  Matthew A. Davies,et al.  Diamond Machining of Freeform Infrared Optics , 2012 .

[61]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[62]  Tao Sun,et al.  Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals , 2013 .

[63]  M. C. Shaw Metal Cutting Principles , 1960 .

[64]  Kai Cheng,et al.  Multiscale simulation on nanometric cutting of single crystal copper , 2006 .

[65]  Luciana Montanari,et al.  Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon , 2012 .

[66]  Tsunemoto Kuriyagawa,et al.  Ductile regime turning at large tool feed , 2002 .

[67]  Eric R. Marsh,et al.  Detection of orientation-dependent, single-crystal diamond tool edge wear using cutting force sensors, while spin-turning silicon , 2010 .

[68]  J. Wilks,et al.  Performance of diamonds as cutting tools for precision machining , 1980 .

[69]  R. Reuben,et al.  Brittle-ductile transition during diamond turning of single crystal silicon carbide , 2013 .

[70]  Christopher J. Evans,et al.  Chemical aspects of tool wear in single point diamond turning , 1996 .

[71]  Kausala Mylvaganam,et al.  Nanotwinning in monocrystalline silicon upon nanoscratching , 2011 .

[72]  Mahmudur Rahman,et al.  A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries , 2012 .

[73]  Jiwang Yan,et al.  Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining , 2009 .

[74]  Wei Zhou,et al.  A study on mechanism of nano-cutting single crystal silicon , 2007 .

[75]  Ning He,et al.  Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting , 2016 .

[76]  Dierk Raabe,et al.  Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .

[77]  G. Cross Silicon nanoparticles: isolation leads to change. , 2011, Nature nanotechnology.

[78]  James E. Shigley,et al.  The "Type" Classification System of Diamonds and Its Importance in Gemology , 2009 .

[79]  F. Fang,et al.  Investigations of tool edge radius effect in micromachining : A FEM simulation approach , 2008 .

[80]  Shen Dong,et al.  The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining , 2010 .

[81]  Xichun Luo,et al.  Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting , 2011, Nanoscale research letters.

[82]  Genyu Chen,et al.  A molecular dynamics investigation into the mechanisms of material removal and subsurface damage of nanoscale high speed laser-assisted machining , 2017 .

[83]  Robert F. Cook,et al.  In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films , 2015 .

[84]  Cassio Stein Moura,et al.  Molecular dynamics simulation of silicon nanostructures , 2005 .

[85]  Wei Wang,et al.  Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study , 2012 .

[86]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[87]  T. Tsuchiya,et al.  Crystal orientation-dependent fatigue characteristics in micrometer-sized single-crystal silicon , 2016, Microsystems & nanoengineering.

[88]  J. Field,et al.  The mechanical and strength properties of diamond , 2012, Reports on progress in physics. Physical Society.

[89]  Taylan Altan,et al.  A finite element analysis of orthogonal machining using different tool edge geometries , 2004 .

[90]  M. B. Cai,et al.  Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon , 2007 .

[91]  Shoichi Shimada,et al.  Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining , 1992 .

[92]  Mo Li,et al.  Nucleation and melting from nanovoids. , 2006, Nano letters.

[93]  Eiji Shamoto,et al.  Investigation of tool wear suppression in ultraprecision diamond machining of die steel , 2011 .

[94]  Renqin Zhang,et al.  Vacancy-defect–induced diminution of thermal conductivity in silicene , 2012 .

[95]  D. A. Lucca,et al.  Energy Dissipation and Tool-Workpiece Contact in Ultra-Precision Machining , 1994 .

[96]  Liangchi Zhang,et al.  Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations , 2014 .

[97]  Khaled Abou-El-Hossein,et al.  REVIEW OF ULTRA-HIGH PRECISION DIAMOND TURNING OF SILICON FOR INFRARED OPTICS , 2017 .

[98]  Jun Shimizu,et al.  Molecular dynamics simulation of vibration-assisted cutting: influences of vibration parameters , 2006, Int. J. Manuf. Technol. Manag..

[99]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[100]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[101]  N. P. Hung,et al.  Effect of Crystalline Orientation in the Ductile-Regime Machining of Silicon , 2000 .

[102]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[103]  Alexander Stukowski,et al.  Atomistic investigation on the structure–property relationship during thermal spray nanoparticle impact , 2014 .

[104]  Tao Sun,et al.  Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process , 2008 .

[105]  Robert Lewis Reuben,et al.  Replacing diamond cutting tools with CBN for efficient nanometric cutting of silicon , 2012 .

[106]  J. Patten,et al.  Extreme negative rake angle technique for single point diamond nano-cutting of silicon , 2001 .

[107]  Ranga Komanduri,et al.  Molecular dynamics simulation of atomic-scale friction , 2000 .

[108]  Muammer Nalbant,et al.  The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys , 2007 .

[109]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[110]  D. L. Callahan,et al.  Origins of the Ductile Regime in Single-Point Diamond Turning of Semiconductors , 1995 .

[111]  S. Chavoshi,et al.  Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation , 2016 .

[112]  Eiji Kondo,et al.  Ultra-Precision Cutting of Single Crystal Silicon Using Diamond Tool with Large Top Corner Radius , 2012 .

[113]  Lihua Dong,et al.  Study of HPHT single crystal diamond as precision cutting tool material , 2012 .

[114]  Yingchun Liang,et al.  Anisotropy of Single-Crystal Silicon in Nanometric Cutting , 2017, Nanoscale Research Letters.

[115]  W. S. Blackley,et al.  Ductile-regime machining model for diamond turning of brittle materials , 1991 .

[116]  K. Abou-El-Hossein,et al.  Surface finish in ultra-precision diamond turning of single-crystal silicon , 2015, SPIE Optifab.

[117]  Jiwang Yan,et al.  New insights into phase transformations in single crystal silicon by controlled cyclic nanoindentation , 2015 .

[118]  J. Keinonen,et al.  Formation of Ion Irradiation-Induced Small-Scale Defects on Graphite Surfaces. , 1996, Physical review letters.

[119]  X. Chen,et al.  The effect of depth of cut on the Molecular Dynamics (MD) simulation of multi-pass nanometric machining , 2011, The 17th International Conference on Automation and Computing.

[120]  W. Oliver,et al.  Hardness measurement at penetration depths as small as 20 nm , 1983 .

[121]  Xiaopeng Shen,et al.  Melting Properties of Medium-Sized Silicon Nanoclusters: A Molecular Dynamics Study , 2017, Journal of Electronic Materials.

[122]  J. R. Morris,et al.  Molecular dynamics simulation of nanoscale machining of copper , 2003 .

[123]  Yufang Wang,et al.  Study on nanometric cutting of germanium by molecular dynamics simulation , 2013, Nanoscale Research Letters.

[124]  Young Min Kim,et al.  Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system , 2009 .

[125]  Ranga Komanduri,et al.  Some aspects of machining with negative-rake tools simulating grinding: A molecular dynamics simulation approach , 1999 .

[126]  Jiu Yin,et al.  The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation , 2016 .

[127]  Eduardo M. Bringa,et al.  Amorphization and nanocrystallization of silicon under shock compression , 2016 .

[128]  Guicai Zhang,et al.  Modeling of Cutting Force Distribution on Tool Edge in Turning Process , 2015 .

[129]  D. L. Callahan,et al.  Origins of microplasticity in low-load scratching of silicon , 1994 .

[130]  M. Rahman,et al.  The Effect of the Cutting Edge Radius on a Machined Surface in the Nanoscale Ductile Mode Cutting of Silicon Wafer , 2007 .

[131]  Shoichi Shimada,et al.  Non-Destructive Strength Evaluation of Diamond for Ultra-Precision Cutting Tool , 1985 .

[132]  M. Sklad,et al.  Machining of aluminum/silicon carbide particulate metal matrix composites: Part IV. Residual stresses in the machined workpiece , 2004 .

[133]  Jun Shimizu,et al.  Molecular dynamics simulation of vibration-assisted cutting: influences of vibration, acceleration and velocity , 2006 .

[134]  Long Wan,et al.  Micropatterning of diamond crystallites via cobalt-catalyzed thermochemical etching , 2016, Journal of Materials Science.

[135]  Giovanni Ciccotti,et al.  Molecular Dynamics Simulation , 2014 .

[136]  Fengzhou Fang,et al.  Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting , 2017, Nanoscale Research Letters.

[137]  Don A. Lucca,et al.  Aspects of Surface Generation in Orthogonal Ultraprecision Machining , 1994 .

[138]  Takaji Inamuro,et al.  Molecular dynamics simulation of amorphous silicon with Tersoff potential , 1994 .

[139]  S. Goel An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials , 2013 .

[140]  S. To,et al.  A review of fly cutting applied to surface generation in ultra-precision machining , 2016 .

[141]  K. Abou-El-Hossein,et al.  Preliminary investigation of surface finish of a contact lens polymer in ultra-high precision diamond turning , 2013, 2013 6th Robotics and Mechatronics Conference (RobMech).

[142]  Hongwei Zhao,et al.  Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations , 2014 .

[143]  Xichun Luo,et al.  The development of a surface defect machining method for hard turning processes , 2013 .

[144]  R Komanduri,et al.  A review on the molecular dynamics simulation of machining at the atomic scale , 2001 .

[145]  A. Franks,et al.  Single-point diamond machining of glasses , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[146]  S. To,et al.  Molecular dynamics modelling of brittle–ductile cutting mode transition: Case study on silicon carbide , 2015 .

[147]  Mizushima,et al.  Ideal crystal stability and pressure-induced phase transition in silicon. , 1994, Physical review. B, Condensed matter.

[148]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[149]  S. Goel The current understanding on the diamond machining of silicon carbide , 2014 .

[150]  A. P. Knights,et al.  Electrical properties of Si-XII and Si-III formed by nanoindentation , 2010, 2010 Conference on Optoelectronic and Microelectronic Materials and Devices.

[151]  Xiaoping Li,et al.  Molecular dynamics modelling and simulation of nanoscale ductile cutting of silicon , 2007, Int. J. Comput. Appl. Technol..

[152]  Michael J. Lance,et al.  Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior , 2005 .

[153]  Yuanqiang Tan,et al.  Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC , 2009 .

[154]  Hui Wang,et al.  Tribochemical mechanism of amorphous silica asperities in aqueous environment: a reactive molecular dynamics study. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[155]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[156]  Hiroaki Tanaka,et al.  Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation , 2007 .

[157]  Jaroslava Fulemová,et al.  on Intelligent Manufacturing and Automation , 2013 Influence of the Cutting Edge Radius and the Cutting Edge Preparation on Tool Life and Cutting Forces at Inserts with Wiper Geometry , 2014 .

[158]  N. Chandrasekaran,et al.  A new method for molecular dynamics simulation of nanometric cutting , 1998 .

[159]  Deepak Ravindra,et al.  Ductile regime material removal of silicon carbide (SIC) , 2011 .

[160]  Shaobo Li,et al.  Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation , 2018 .

[161]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[162]  E. Hernández,et al.  Molecular Dynamics: from basic techniques to applications (A Molecular Dynamics Primer) , 2008 .

[163]  Phillip John,et al.  The oxidation of (100) textured diamond , 2002 .

[164]  Tsunemoto Kuriyagawa,et al.  Crystallographic effect on subsurface damage formation in silicon microcutting , 2012 .

[165]  Robert Lewis Reuben,et al.  Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon , 2012 .

[166]  RamaGopal V. Sarepaka,et al.  Investigation of Tool Life & Surface Roughness During Single Point Diamond Turning of Silicon. , 2012 .

[167]  Peter Gumbsch,et al.  Screened empirical bond-order potentials for Si-C , 2013, 1301.2142.

[168]  YaChao Wang,et al.  A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation , 2014 .

[169]  Keith Ridgway,et al.  The Effect of Cutting Tool Material and Edge Geometry on Tool Life and Workpiece Surface Integrity , 2006 .

[170]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[171]  R. Komanduri,et al.  Molecular dynamics simulation of the nanometric cutting of silicon , 2001 .

[172]  Robert F. Cook,et al.  Effect of crystallographic orientation on phase transformations during indentation of silicon , 2009 .

[173]  Mark F. Horstemeyer,et al.  A molecular dynamics study of void growth and coalescence in single crystal nickel , 2006 .

[174]  Ronald O. Scattergood,et al.  Ductile-regime turning of germanium and silicon , 1989 .

[175]  Christer Persson,et al.  Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams , 2007 .

[176]  J. Gilman Mechanism of shear-induced metallization , 1995 .

[177]  Shoichi Shimada,et al.  Brittle/Ductile Transition Phenomena Observed in Computer Simulations of Machining Defect-Free Monocrystalline Silicon , 1997 .

[178]  Michael I. Baskes,et al.  Modified embedded-atom method interatomic potentials for Ti and Zr , 2006 .

[179]  Nack J. Kim,et al.  Atomistic Modeling of pure Mg and Mg―Al systems , 2009 .

[180]  M. B. Cai,et al.  Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation , 2007 .

[181]  Xichun Luo,et al.  Modeling and simulation of the tool wear in nanometric cutting , 2003 .

[182]  Xichun Luo,et al.  Molecular dynamics simulation investigation of hot nanometric cutting of single crystal silicon , 2016 .

[183]  Jen Fin Lin,et al.  Atomistic simulations of hard and soft films under nanoindentation , 2007 .

[184]  Troy D. Marusich,et al.  NUMERICAL SIMULATIONS OF DUCTILE MACHINING OF SILICON NITRIDE WITH A CUTTING TOOL OF DEFINED GEOMETRY , 2001 .

[185]  Fengzhou Fang,et al.  Molecular dynamics study on various nanometric cutting boundary conditions , 2009 .

[186]  Suet To,et al.  Ultraprecision diamond turning of aluminium single crystals , 1997 .

[187]  Xichun Luo,et al.  Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC , 2016 .

[188]  Chen,et al.  Energy and vibrational spectrum of the Si(111) (7 x 7) surface from empirical potentials. , 1988, Physical review. B, Condensed matter.

[189]  Tsunemoto Kuriyagawa,et al.  Tool wear control in diamond turning of high-strength mold materials by means of tool swinging , 2010 .

[190]  Xuesong Han,et al.  Molecular dynamics analysis micro-mechanism of ductile machining single crystal silicon by means of nanometric cutting technology , 2008 .

[191]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[192]  Hui Wang,et al.  Molecular Dynamics Study on Friction Due to Ploughing and Adhesion in Nanometric Scratching Process , 2011 .

[193]  Xichun Luo,et al.  An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures , 2016 .

[194]  Jacques G. Amar,et al.  Molecular dynamics simulations of nanoscratching of 3C SiC , 2006 .

[195]  B. Liu,et al.  How to compute the atomic stress objectively , 2008 .

[196]  Jee-Gong Chang,et al.  Molecular dynamics analysis of temperature effects on nanoindentation measurement , 2003 .

[197]  C. J. Wong Fracture and Wear of Diamond Cutting Tools , 1981 .

[198]  Luquan Ren,et al.  Molecular Dynamics Simulation of the Crystal Orientation and Temperature Influences in the Hardness on Monocrystalline Silicon , 2014 .

[199]  Adri C. T. van Duin,et al.  Comparative molecular dynamics study of fcc-Ni nanoplate stress corrosion in water , 2015 .

[200]  J. Paulo Davim,et al.  Machinability of Advanced Materials: Davim/Machinability of Advanced Materials , 2014 .

[201]  Yu Hai Zhou The Application and Performance of Diamond and PCBN Tools in Difficult-to-Cut Materials , 2017 .

[202]  Yingchun Liang,et al.  Molecular dynamics simulations of thermal effects in nanometric cutting process , 2010 .

[203]  Tersoff Carbon defects and defect reactions in silicon. , 1990, Physical review letters.

[204]  Steven Y. Liang,et al.  Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials , 2009 .

[205]  Tsunemoto Kuriyagawa,et al.  Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide , 2011 .

[206]  A. Evans,et al.  Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .

[207]  M. B. Cai,et al.  Study of the Mechanism of Groove Wear of the Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon , 2007 .

[208]  Jiachun Wang,et al.  Effect of cutting temperature on hardness of SiC and diamond in the nano-cutting process of monocrystalline silicon , 2016, Other Conferences.

[209]  Jing Shi,et al.  Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis , 2013, Nanoscale Research Letters.

[210]  E Tosatti,et al.  Peak effect versus skating in high-temperature nanofriction. , 2007, Nature materials.

[211]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[212]  P. S. Sreejith,et al.  Machining force studies on ductile machining of silicon nitride , 2005 .

[213]  Fengzhou Fang,et al.  An experimental study of edge radius effect on cutting single crystal silicon , 2003 .

[214]  Jiwang Yan,et al.  Mechanism for material removal in diamond turning of reaction-bonded silicon carbide , 2009 .

[215]  Lisa J. Porter,et al.  EMPIRICAL BOND-ORDER POTENTIAL DESCRIPTION OF THERMODYNAMIC PROPERTIES OF CRYSTALLINE SILICON , 1997 .

[216]  Etienne le Coarer,et al.  Infrared camera based on a curved retina. , 2012, Optics letters.

[217]  Berend Denkena,et al.  Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load , 2011 .

[218]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[219]  Koji Kato,et al.  Wear of the AFM diamond tip sliding against silicon , 1997 .

[220]  Liangchi Zhang,et al.  Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation , 2000 .

[221]  Ronald O. Scattergood,et al.  Ductile‐Regime Machining of Germanium and Silicon , 1990 .

[222]  Habib Mehrez,et al.  Yielding and fracture mechanisms of nanowires , 1997 .

[223]  Min Zhou,et al.  A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[224]  Ishimaru,et al.  Application of empirical interatomic potentials to liquid Si. , 1996, Physical review. B, Condensed matter.

[225]  F. Biscarini,et al.  The contact mechanics of fractal surfaces , 2003, Nature materials.

[226]  Masahiro Higuchi,et al.  Scientific Screening of Raw Diamond for an Ultraprecision Cutting Tool with High Durability , 2006 .

[227]  Siyuan Yu,et al.  Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method , 2009 .

[228]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[229]  Xichun Luo,et al.  The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon , 2016 .

[230]  Tersoff Chemical order in amorphous silicon carbide. , 1994, Physical review. B, Condensed matter.

[231]  Xichun Luo,et al.  Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures , 2016 .

[232]  Cheng-I Weng,et al.  An investigation into the melting of silicon nanoclusters using molecular dynamics simulations , 2005, Nanotechnology.

[233]  Tao Sun,et al.  Critical undeformed chip thickness of brittle materials in single point diamond turning , 2015 .

[234]  Bin Liu,et al.  Investigation on applicability of various stress definitions in atomistic simulation , 2009 .

[235]  E. Makino,et al.  Ductile-regime turning mechanism of single-crystal silicon , 1996 .

[236]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[237]  H. Balamane,et al.  Comparative study of silicon empirical interatomic potentials. , 1992, Physical review. B, Condensed matter.

[238]  Hongwei Zhao,et al.  A Study on Material Removal Caused by Phase Transformation of Monocrystalline Silicon During Nanocutting Process via Molecular Dynamics Simulation , 2014 .

[239]  Shaobo Li,et al.  Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation , 2017 .

[240]  P. Levashov,et al.  Two-phase simulation of the crystalline silicon melting line at pressures from -1 to 3 GPa. , 2012, The Journal of chemical physics.

[241]  Kleinman,et al.  Instabilities in diamond under high shear stress , 2000, Physical review letters.

[242]  F. Fang,et al.  Molecular dynamics study on nanometric cutting of ion implanted silicon , 2016 .

[243]  R. Komanduri,et al.  On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications , 2001 .

[244]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[245]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[246]  M. Rahman,et al.  Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation , 2007 .

[247]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[248]  Chun Zhao,et al.  Recent Progress in Silicon Photonics: A Review , 2012 .

[249]  Ya-Peng Shen,et al.  Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper , 2009 .

[250]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[251]  Zhaowei Zhong,et al.  Ductile or Partial Ductile Mode Machining of Brittle Materials , 2003 .

[252]  Khaled Abou-El-Hossein,et al.  Quality of silicon convex lenses fabricated by ultra-high precision diamond machining , 2013 .

[253]  M. Rahman,et al.  A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers , 2007 .

[254]  Xichun Luo,et al.  Dislocation-mediated plasticity in silicon during nanometric cutting : a molecular dynamics simulation study materials science in semiconductor processing , 2016 .

[255]  E. Stach,et al.  Room temperature dislocation plasticity in silicon , 2005 .

[256]  Tsunemoto Kuriyagawa,et al.  Effects of tool edge radius on ductile machining of silicon: an investigation by FEM , 2009 .

[257]  Irving F. Stowers,et al.  Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surfaces , 1993 .

[258]  Kapil Sharma,et al.  In Metal Turning, Effect of Various Parameters on Cutting Tool: A Review , 2016 .

[259]  Gemma Safont Camprubí,et al.  Mechanical properties at nano-level , 2010 .

[260]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[261]  Ajit Kumar Senapati,et al.  TECHNOLOGY A Review on the Effect of Process Parameters on Different Output Parameters During Machining of Several Materials , 2014 .

[262]  Eduardo M. Bringa,et al.  Pressure and shear-induced amorphization of silicon , 2015 .

[263]  Zhihuai Xiao,et al.  Molecular dynamics study of interfacial thermal transport between silicene and substrates. , 2015, Physical chemistry chemical physics : PCCP.

[264]  Robert Lewis Reuben,et al.  Anisotropy of single-crystal 3C–SiC during nanometric cutting , 2013 .

[265]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[266]  Xichun Luo,et al.  Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools , 2014 .

[267]  Hiroaki Tanaka,et al.  Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding , 1998 .

[268]  Hao Wu,et al.  Fundamental investigations of cutting of silicon for photovoltaic applications , 2012 .

[269]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[270]  R. Scattergood,et al.  Ductile-Regime Grinding: A New Technology for Machining Brittle Materials , 1991 .

[271]  K. Abou-El-Hossein,et al.  Tribo-electric Charging in the Ultra-high Precision Machining of Contact Lens Polymers☆ , 2014 .

[272]  Saeed Zare Chavoshi,et al.  Addressing the discrepancy of finding the equilibrium melting point of silicon using molecular dynamics simulations , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[273]  Kug Weon Kim,et al.  A finite-element analysis of machining with the tool edge considered , 1999 .

[274]  Alexander Stukowski,et al.  Self-healing of cracks during ductile regime machining of silicon: Insights from molecular dynamics simulation , 2016 .

[275]  M. Zimmermann,et al.  An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single crystal silicon optics , 1999 .

[276]  Q. Fang,et al.  A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation , 2017 .

[277]  Khaled Abou-El-Hossein,et al.  Molecular Dynamics Modeling of Nanoscale Machining of Silicon , 2013 .

[278]  Mool C. Gupta,et al.  Static compression of silicon in the [100] and in the [111] directions , 1980 .

[279]  S. I. Oh,et al.  Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation , 2006 .

[280]  Roger Smith,et al.  Molecular dynamics simulations of nanoindentation and nanotribology , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[281]  Robert Lewis Reuben,et al.  Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide , 2012 .

[282]  Yasuhiro Kakinuma,et al.  Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride , 2015 .

[283]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[284]  Arun K. Subramaniyan,et al.  Continuum interpretation of virial stress in molecular simulations , 2008 .

[285]  M. Rahman,et al.  Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer , 2005 .

[286]  Xinyu Shao,et al.  Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method , 2014 .

[287]  Fengzhou Fang,et al.  Nanometric cutting in a scanning electron microscope , 2015 .

[288]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[289]  Khaled Abou-El-Hossein,et al.  Modelling of Surface Roughness in Ultra-High Precision Turning of an RGP Contact Lens Polymer , 2017 .

[290]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[291]  Bin Lin,et al.  Investigation of tool geometry in nanometric cutting by molecular dynamics simulation , 2002 .

[292]  Katsunori Yamaguchi,et al.  Measurement of high temperature heat content of silicon by drop calorimetry , 2002 .

[293]  Hongwei Zhao,et al.  A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation , 2012 .

[294]  R. Reuben,et al.  Shear instability of nanocrystalline silicon carbide during nanometric cutting , 2012 .

[295]  C. Lu,et al.  Study of Materials Deformation in Nanometric Cutting by Large-scale Molecular Dynamics Simulations , 2009, Nanoscale research letters.

[296]  F. Z. Fang,et al.  Molecular Dynamics Investigation of Cutting Force in Nanometric Cutting of Monocrystalline Silicon , 2010 .

[297]  Steven D. Kenny,et al.  Defect generation and pileup of atoms during nanoindentation of Fe single crystals , 2003 .

[298]  Chi-Chuan Hwang,et al.  Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip , 2004 .

[299]  Richard Alan Lesar,et al.  Introduction to Computational Materials Science: Fundamentals to Applications , 2013 .

[300]  Hazim El-Mounayri,et al.  Molecular Dynamics Simulation of Nanometric Machining Under Realistic Cutting Conditions , 2008 .

[301]  Ranga Komanduri,et al.  Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters , 2005 .

[302]  Guipeng Tie,et al.  Research on full-aperture ductile cutting of KDP crystals using spiral turning technique , 2013 .

[303]  Olaf Dambon,et al.  Analysis of critical process parameters of ductile mode grinding of brittle materials , 2017 .

[304]  Satoshi Izumi,et al.  Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation , 2007 .

[305]  Shoichi Shimada,et al.  Microfracture of Diamond as Fine Tool Material , 1982 .

[306]  B. Alder,et al.  Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres , 1960 .

[307]  Peter Gumbsch,et al.  Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range , 2008 .

[308]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[309]  M. B. Cai,et al.  Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear , 2007 .

[310]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[311]  Qihong Fang,et al.  Prediction of the threshold load of dislocation emission in silicon during nanoscratching , 2013 .

[312]  Stephen C. Veldhuis,et al.  Effect of material microstructure and tool geometry on surface generation in single point diamond turning , 2014 .

[313]  Robert Lewis Reuben,et al.  A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide , 2012 .

[314]  Han Lei,et al.  Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation , 2016 .

[315]  Hiroaki Tanaka,et al.  Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis , 1997 .

[316]  Eric R. Marsh,et al.  THE EFFECT OF CRYSTALLOGRAPHIC ORIENTATION ON DUCTILE MATERIAL REMOVAL IN SILICON , 2022 .

[317]  Tersoff,et al.  Glassy quasithermal distribution of local geometries and defects in quenched amorphous silicon. , 1988, Physical review letters.

[318]  Zhanqiang Liu,et al.  An investigation on machinability assessment of difficult-to-cut materials based on radar charts , 2013 .

[319]  Xun Chen,et al.  The Effect of Interatomic Potentials on Nanometric Abrasive Machining , 2010 .

[320]  I. F. Stowers,et al.  A molecular dynamics model of the orthogonal cutting process , 1990 .

[321]  Minghai Wang,et al.  Weakening of the anisotropy of surface roughness in ultra-precision turning of single-crystal silicon , 2015 .