DYNAMIC DIMENSIONING OF BALANCING POWER WITH FLEXIBLE FEATURE SELECTION
暂无分享,去创建一个
[1] Shinichi Morishita,et al. On Classification and Regression , 1998, Discovery Science.
[2] J. Friedman. Stochastic gradient boosting , 2002 .
[3] Oliver Brückl,et al. Wahrscheinlichkeitstheoretische Bestimmung des Regel- und Reserveleistungsbedarfs in der Elektrizitätswirtschaft , 2006 .
[4] Oliver Kramer,et al. Statistical Learning for Short-Term Photovoltaic Power Predictions , 2016, Computational Sustainability.
[5] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[6] T. Schluter,et al. Flexible dimensioning of control reserve for future energy scenarios , 2013, 2013 IEEE Grenoble Conference.
[7] Oliver Kramer. Computational Intelligence - Eine Einführung , 2009, Informatik im Fokus.
[8] Ekaterina Mangalova,et al. Wind power forecasting using the k-nearest neighbors algorithm , 2014 .
[9] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[10] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[11] Christopher M. Bishop,et al. Classification and regression , 1997 .
[12] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[13] Leo Breiman,et al. Classification and Regression Trees , 1984 .