Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering

We prove wavenumber-explicit bounds on the Dirichlet-to-Neumann map for the Helmholtz equation in the exterior of a bounded obstacle when one of the following three conditions holds: (i) the exterior of the obstacle is smooth and nontrapping, (ii) the obstacle is a nontrapping polygon, or (iii) the obstacle is star-shaped and Lipschitz. We prove bounds on the Neumann-to- Dirichlet map when condition (i) and (ii) hold. We also prove bounds on the solutions of the interior and exterior impedance problems when the obstacle is a general Lipschitz domain. These bounds are the sharpest yet obtained (for their respective problems) in terms of their dependence on the wavenumber. One motivation for proving these collection of bounds is that they can then be used to prove wavenumber-explicit bounds on the inverses of the standard second-kind integral operators used to solve the exterior Dirichlet, Neumann, and impedance problems for the Helmholtz equation.

[1]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[2]  Ralf Hiptmair,et al.  STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .

[3]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[4]  V. M. Babič ON THE ASYMPTOTICS OF GREEN′S FUNCTIONS FOR CERTAIN WAVE PROBLEMS. I. STATIONARY CASE , 1971 .

[5]  F. Rellich Darstellung der Eigenwerte vonδu+λu=0 durch ein Randintegral , 1940 .

[6]  Cathleen S. Morawetz,et al.  Decay for solutions of the exterior problem for the wave equation , 1975 .

[7]  Jens Markus Melenk,et al.  Wavenumber-Explicit hp-BEM for High Frequency Scattering , 2011, SIAM J. Numer. Anal..

[8]  E. Lakshtanov Spectral properties of the Dirichlet-to-Neumann operator for exterior Helmholtz problem and its applications to scattering theory , 2008, 0810.3268.

[9]  R. Grimshaw High‐frequency scattering by finite convex regions , 1966 .

[10]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[11]  Gang Bao,et al.  Stability of the Scattering from a Large Electromagnetic Cavity in Two Dimensions , 2012, SIAM J. Math. Anal..

[12]  I. Graham,et al.  Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.

[13]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[14]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[15]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[16]  Vasilii M. Babič,et al.  The boundary-layer method in diffraction problems , 1979 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  Jared Wunsch,et al.  Diffraction of singularities for the wave equation on manifolds with corners , 2009 .

[19]  Euan A. Spence,et al.  Coercivity of Combined Boundary Integral Equations in High‐Frequency Scattering , 2015 .

[20]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[21]  F. Ursell,et al.  On the short-wave asymptotic theory of the wave equation (∇2 + k2)ø = 0 , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  U. Hetmaniuk Stability estimates for a class of Helmholtz problems , 2007 .

[23]  Jared Wunsch,et al.  Propagation of singularities for the wave equation on edge manifolds , 2006 .

[24]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[25]  Cathleen S. Morawetz,et al.  The decay of solutions of the exterior initial-boundary value problem for the wave equation , 1961 .

[26]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[27]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[28]  L. LakshtanovE Spectral properties of the Dirichlet-to-Neumann operator for the exterior Helmholtz problem and its applications to scattering theory , 2010 .

[29]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[30]  Francisco-Javier Sayas,et al.  Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves , 2009, Numerische Mathematik.

[31]  Jens Markus Melenk,et al.  Mapping Properties of Combined Field Helmholtz Boundary Integral Operators , 2012, SIAM J. Math. Anal..

[32]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[33]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[34]  J. Wunsch,et al.  Propagation of singularities for the wave equation on conic manifolds , 2004 .

[35]  James Ralston,et al.  Decay of solutions of the wave equation outside nontrapping obstacles , 1977 .

[36]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[37]  András Vasy Propagation of singularities for the wave equation on manifolds with corners , 2005 .

[38]  D. Ludwig,et al.  An inequality for the reduced wave operator and the justification of geometrical optics , 1968 .

[39]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[40]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[41]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[42]  E. A. Spence,et al.  “When all else fails, integrate by parts” – an overview of new and old variational formulations for linear elliptic PDEs , 2014 .

[43]  E. Spence Bounding acoustic layer potentials via oscillatory integral techniques , 2015 .

[44]  Weiwei Sun,et al.  Legendre Spectral Galerkin Method for Electromagnetic Scattering from Large Cavities , 2013, SIAM J. Numer. Anal..

[45]  J. Wunsch,et al.  Resolvent estimates and local decay of waves on conic manifolds , 2012, 1209.4883.

[46]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[47]  F. Ursell On the rigorous foundation of short-wave asymptotics , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[49]  J. Melenk,et al.  On Stability of Discretizations of the Helmholtz Equation (extended version) , 2011, 1105.2112.

[50]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[51]  Neal A Pock,et al.  When all else fails.... , 2003, Medical economics.

[52]  A. Moiola Trefftz-discontinuous Galerkin methods for time-harmonic wave problems , 2011 .

[53]  V. M. Babich,et al.  Asymptotic Methods in Short-Wavelength Diffraction Theory , 2009 .

[54]  Timo Betcke,et al.  Numerical Estimation of Coercivity Constants for Boundary Integral Operators in Acoustic Scattering , 2011, SIAM J. Numer. Anal..

[55]  An elliptic regularity coefficient estimate for a problem arising from a frequency domain treatment of waves , 1994 .

[56]  E. Lakshtanov,et al.  A Priori Estimates for High Frequency Scattering by Obstacles of Arbitrary Shape , 2010, 1011.5261.

[57]  Lexing Ying,et al.  Fast Algorithms for High Frequency Wave Propagation , 2012 .