Optimal Internal Dissipation of a Damped Wave Equation Using a Topological Approach

Optimal Internal Dissipation of a Damped Wave Equation Using a Topological Approach We consider a linear damped wave equation defined on a two-dimensional domain Ω, with a dissipative term localized in a subset ω. We address the shape design problem which consists in optimizing the shape of ω in order to minimize the energy of the system at a given time T. By introducing an adjoint problem, we first obtain explicitly the (shape) derivative of the energy at time T with respect to the variation in ω. Expressed as a boundary integral on ∂ω, this derivative is then used as an advection velocity in a Hamilton-Jacobi equation for shape changes. We use the level-set methodology on a fixed working Eulerian mesh as well as the notion of the topological derivative. We also consider optimization with respect to the value of the damping parameter. The numerical approximation is presented in detail and several numerical experiments are performed which relate the over-damping phenomenon to the well-posedness of the problem.

[1]  Pascal Hébrard,et al.  Optimal shape and position of the actuators for the stabilization of a string , 2003, Syst. Control. Lett..

[2]  Arnaud Münch,et al.  A uniformly controllable and implicit scheme for the 1-D wave equation , 2005 .

[3]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[4]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[5]  Jan Sokolowski,et al.  Level set method with topological derivatives in shape optimization , 2008, Int. J. Comput. Math..

[6]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[7]  J. López-Gómez On the Linear Damped Wave Equation , 1997 .

[8]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[9]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[10]  Pablo Pedregal,et al.  A Spatio-temporal Design Problem for a Damped Wave Equation , 2007, SIAM J. Appl. Math..

[11]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[12]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[13]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[14]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[15]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[16]  G. Allaire,et al.  Structural optimization using topological and shape sensitivity via a level set method , 2005 .

[17]  H. Banks,et al.  Exponentially stable approximations of weakly damped wave equations , 1991 .

[18]  Jean-Paul Zolésio,et al.  Shape stabilization of wave equation , 1988 .

[19]  Arnaud Münch,et al.  Optimal location of the support of the control for the 1-D wave equation: numerical investigations , 2009, Comput. Optim. Appl..

[20]  Carlos Castro,et al.  Achieving Arbitrarily Large Decay in the Damped Wave Equation , 2001, SIAM J. Control. Optim..

[21]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[22]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[23]  Antoine Henrot,et al.  Optimization of the shape and the location of the actuators in an internal control problem , 2001 .

[24]  Antoine Henrot,et al.  A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..

[25]  Arnaud Münch,et al.  UNIFORM STABILIZATION OF A VISCOUS NUMERICAL APPROXIMATION FOR A LOCALLY DAMPED WAVE EQUATION , 2007 .

[26]  P. Freitas Optimizing the Rate of Decay of Solutions of the Wave Equation Using Genetic Algorithms: A Counterexample to the Constant Damping Conjecture , 1999 .

[27]  John Cagnol,et al.  SHAPE DERIVATIVE IN THE WAVE EQUATION WITH DIRICHLET BOUNDARY CONDITIONS , 1999 .

[28]  Arnaud Münch,et al.  UNIFORM STABILIZATION OF A NUMERICAL APPROXIMATION OF A LOCALLY DAMPED WAVE EQUATION , 2022 .

[29]  Pablo Pedregal,et al.  OPTIMAL DESIGN OF THE DAMPING SET FOR THE STABILIZATION OF THE WAVE EQUATION , 2006 .

[30]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[31]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[32]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[33]  Mary F. Wheeler,et al.  A mixed finite element formulation for the boundary controllability of the wave equation , 1989 .

[34]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[35]  Emmanuel Degryse,et al.  Shape optimization of piezoelectric sensors or actuators for the control of plates , 2005 .

[36]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[37]  Pablo Pedregal,et al.  Optimal Internal Stabilization of the Linear System of Elasticity , 2009 .