暂无分享,去创建一个
[1] Ernesto Vallejo,et al. Stability of Kronecker Products of Irreducible Characters of the Symmetric Group , 1999, Electron. J. Comb..
[2] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[3] Mercedes H. Rosas. The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes , 2000 .
[4] Hariharan Narayanan. On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .
[5] Martin E. Dyer,et al. Sampling contingency tables , 1997 .
[6] Ketan Mulmuley,et al. Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients , 2005, ArXiv.
[7] Peter Bürgisser,et al. The complexity of computing Kronecker coefficients , 2008 .
[8] D. E. Littlewood,et al. Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups , 1958, Canadian Journal of Mathematics.
[9] Mike Zabrocki,et al. Expressions for Catalan Kronecker Products , 2008, 0809.3469.
[10] Hanspeter Kraft,et al. Classical invariant theory: a primer , 1996 .
[11] Jeffrey B. Remmel,et al. On the Kronecker product of Schur functions of two row shapes , 1994 .
[12] Ketan Mulmuley,et al. Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..
[13] M. Brion,et al. Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .
[14] Christophe Tollu,et al. Stretched Littlewood-Richardson and Kostka Coefficients , 2004 .
[15] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[16] Etienne Rassart. A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.
[17] F. Murnaghan. The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1938 .
[18] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[19] F D Murnaghan. ON THE ANALYSIS OF THE KRONECKER PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF S(n). , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[20] T. Tao,et al. THE SATURATION CONJECTURE (AFTER A. KNUTSON , 2006 .
[21] Rosa Orellana,et al. A COMBINATORIAL INTERPRETATION FOR THE COEFFICIENTS IN THE KRONECKER PRODUCT s(n p;p) s , 2005 .
[22] Emmanuel Briand,et al. Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract) , 2008 .
[23] Jesús A. De Loera,et al. On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..
[24] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[25] T. Tao,et al. Honeycombs and sums of Hermitian matrices , 2000, math/0009048.
[26] Ketan Mulmuley,et al. Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry , 2007, ArXiv.
[27] Ketan Mulmuley,et al. On P vs. NP, Geometric Complexity Theory, and the Flip I: a high level view , 2007, ArXiv.