Zero-power mismatch-independent digital to analog converter

Abstract A new switched-capacitor digital to analog converter (DAC) is presented. In this DAC, a ladder of series capacitors is used to generate the output voltage levels. A correction phase is used to increase the precision of the DAC. It is analytically shown that the proposed DAC is mismatch independent by virtue of the correction phase. That is after few correction phases (typically one), the effect of mismatch on the reference voltage levels on the ladder diminishes and an accurate voltage division is provided. It is proven that the whole process sinks no extra charge from the power supply. Furthermore, post layout simulations in 0.18 μm technology proves the benefits of the proposed method.