Facile Fabrication and High Photoelectric Properties of Hierarchically Ordered Porous TiO2

This paper presents the first successful fabrication of hierarchically ordered porous (HOP) TiO2. Poly(styrene-co-acrylic acid) colloidal spheres and triblock copolymer P123 were used as macro- and mesoporous structure-directing agents, and titanium chloride and titanium tetraisopropoxide were used as sources of titania. When the mixture of polymer spheres, P123, and titania precursors were cast on substrates, and conducted for complete solvent evaporation, followed by thermal treatment, large-scale HOP TiO2 can be directly fabricated. The in situ chelate effect between the titania precursors and the poly(styrene-co-acrylic acid) plays a key role in the fabrication of HOP TiO2. The as-obtained HOP TiO2 exhibits 50% and 70% greater the highest photocurrent under UV and visible lights, respectively, and far higher photoelectrocatalytic property than commercial TiO2 (P-25).

[1]  T. Sen,et al.  A hierarchically ordered porous novel vanado-silicate catalyst for highly efficient oxidation of bulky organic molecules. , 2012, Chemical communications.

[2]  S. Ahn,et al.  Direct Assembly of Preformed Nanoparticles and Graft Copolymer for the Fabrication of Micrometer‐thick, Organized TiO2 Films: High Efficiency Solid‐state Dye‐sensitized Solar Cells , 2012, Advanced materials.

[3]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[4]  X. Fang,et al.  Fabrication and application of inorganic hollow spheres. , 2011, Chemical Society reviews.

[5]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[6]  Hyunjung Lee,et al.  Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres , 2011 .

[7]  J. Moon,et al.  Hierarchically Porous TiO2 Electrodes Fabricated by Dual Templating Methods for Dye‐Sensitized Solar Cells , 2011, Advanced materials.

[8]  Zhong‐Yong Yuan,et al.  Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. , 2011, Small.

[9]  Qingliu Wu,et al.  Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[10]  Xiuyan Li,et al.  Antibacterial Properties and Corrosion Resistance of Nitrogen-doped TiO2 Coatings on Stainless Steel , 2011 .

[11]  D. Zhao,et al.  Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins , 2011 .

[12]  D. Zhao,et al.  Ligand‐Assisted Assembly Approach to Synthesize Large‐Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework , 2011 .

[13]  Jin Zhai,et al.  Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. , 2011, ACS nano.

[14]  G. Lu,et al.  TiO2 films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes , 2011 .

[15]  S. Ramakrishna,et al.  Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. , 2010, Small.

[16]  T. Sen,et al.  Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. , 2010, Chemical communications.

[17]  Xie Quan,et al.  Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity , 2010 .

[18]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[19]  D. Zhao,et al.  Facile Synthesis of Hierarchically Ordered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as a Catalyst Support , 2010 .

[20]  S. Roth,et al.  Hierarchically structured titania films prepared by polymer/colloidal templating. , 2009, ACS applied materials & interfaces.

[21]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[22]  Tian-Yi Ma,et al.  Hierarchically meso-/macroporous titanium tetraphosphonate materials: Synthesis, photocatalytic activity and heavy metal ion adsorption , 2009 .

[23]  Nangeng Wen,et al.  Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties , 2009 .

[24]  Nam-Gyu Park,et al.  Compact Inverse‐Opal Electrode Using Non‐Aggregated TiO2 Nanoparticles for Dye‐Sensitized Solar Cells , 2009 .

[25]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[26]  A. Stein,et al.  Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity , 2008 .

[27]  Trong-Ming Don,et al.  Synthesis of nanosized PAA/titania hybrid composites— Experiment and modeling , 2008 .

[28]  A. Mata,et al.  Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes , 2008, Science.

[29]  Yang Liu,et al.  Self‐Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand , 2008 .

[30]  Lianmao Peng,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[31]  T. Brezesinski,et al.  Periodically Ordered Meso‐ and Macroporous SiO2 Thin Films and Their Induced Electrochemical Activity as a Function of Pore Hierarchy , 2007 .

[32]  D. Zhao,et al.  Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. , 2007, Journal of the American Chemical Society.

[33]  R. Liu,et al.  Ordered Mesoporous Nanocrystalline Titanium‐Carbide/Carbon Composites from In Situ Carbothermal Reduction , 2007 .

[34]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[35]  Kangnian Fan,et al.  Synthesis of Well-Ordered Mesoporous Titania with Tunable Phase Content and High Photoactivity , 2007 .

[36]  V. S. Sapkal,et al.  Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors , 2006 .

[37]  Min Chen,et al.  Novel and facile method for the preparation of monodispersed titania hollow spheres. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  H. Chang,et al.  A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. , 2005, Small.

[39]  Sung Yeun Choi,et al.  Thermally Stable Two‐Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso‐nc‐TiO2: Bulk and Crack‐Free Thin Film Morphologies , 2004 .

[40]  J. Casci,et al.  One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale. , 2003, Angewandte Chemie.

[41]  David Grosso,et al.  Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. , 2003, Journal of the American Chemical Society.

[42]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[43]  S. Kuo,et al.  Miscibility and Hydrogen Bonding in Blends of Poly(vinylphenol-co-methyl methacrylate) with Poly(ethylene oxide) , 2001 .

[44]  B. Cabane,et al.  Dispersion of alumina-coated TiO2 particles by adsorption of sodium polyacrylate , 2001 .

[45]  Jane F. Bertone,et al.  A lost-wax approach to monodisperse colloids and their crystals. , 2001, Science.

[46]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .

[47]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[48]  A. Vioux Nonhydrolytic Sol−Gel Routes to Oxides , 1997 .

[49]  A. Vioux,et al.  A Solution Chemistry Study of Nonhydrolytic Sol−Gel Routes to Titania , 1997 .

[50]  Jun Zhang,et al.  Poly(methyl methacrylate)–titania hybrid materials by sol–gel processing , 1997 .

[51]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[52]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[53]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[54]  B. You,et al.  Self-assembly of polymer colloids and their solvatochromic-responsive properties , 2011 .

[55]  Hanning Xiao,et al.  Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. , 2005, Journal of colloid and interface science.

[56]  J. Ying,et al.  Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. , 2004, Angewandte Chemie.

[57]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[58]  C. Sanchez,et al.  Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid , 1987 .