Quantum Institutions

The exogenous approach to enriching any given base logic for probabilistic and quantum reasoning is brought into the realm of institutions. The theory of institutions helps in capturing the precise relationships between the logics that are obtained, and, furthermore, helps in analyzing some of the key design decisions and opens the way to make the approach more useful and, at the same time, more abstract.

[1]  Marcelo E. Coniglio,et al.  Two's Company: “The Humbug of Many Logical Values” , 2005 .

[2]  Nils J. Nilsson,et al.  Probabilistic Logic Revisited , 1993, Artif. Intell..

[3]  Roberto Giuntini,et al.  Reasoning in quantum theory , 2004 .

[4]  David J. Foulis,et al.  A Half-Century of Quantum Logic What Have We Learned? , 1999 .

[5]  Bar-Hillel,et al.  Essays on the Foundations of Mathematics , 1961 .

[6]  Amílcar Sernadas,et al.  Weakly complete axiomatization of exogenous quantum propositional logic , 2005, Inf. Comput..

[7]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[8]  Hans-Jörg Kreowski,et al.  Recent Trends in Data Type Specification , 1985, Informatik-Fachberichte.

[9]  José Meseguer,et al.  General Logics , 2006 .

[10]  Fahiem Bacchus,et al.  On probability distributions over possible worlds , 2013, UAI.

[11]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[12]  P. Mateus,et al.  Exogenous Semantics Approach to Enriching Logics , 2005 .

[13]  Amílcar Sernadas,et al.  Reasoning About Quantum Systems , 2004, JELIA.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  H. Dishkant Semantics of the minimal logic of quantum mechanics , 1972 .

[16]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[17]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[18]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[19]  Till Mossakowski,et al.  Different Types of Arrow Between Logical Frameworks , 1996, ICALP.

[20]  Andrzej Tarlecki Moving Between Logical Systems , 1995, COMPASS/ADT.

[21]  Joseph A. Goguen,et al.  A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.

[22]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[23]  P. Mateus,et al.  Exogenous Quantum Logic , 2004 .

[24]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge , 1988 .

[25]  José Meseguer,et al.  May I Borrow Your Logic? (Transporting Logical Structures Along Maps) , 1997, Theor. Comput. Sci..

[26]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .