Random numbers for large scale distributed Monte Carlo simulations

Monte Carlo simulations are one of the major tools in statistical physics, complex system science, and other fields, and an increasing number of these simulations is run on distributed systems like clusters or grids. This raises the issue of generating random numbers in a parallel, distributed environment. In this contribution we demonstrate that multiple linear recurrences in finite fields are an ideal method to produce high quality pseudorandom numbers in sequential and parallel algorithms. Their known weakness (failure of sampling points in high dimensions) can be overcome by an appropriate delinearization that preserves all desirable properties of the underlying linear sequence.

[1]  W. H. Payne,et al.  Coding the Lehmer pseudo-random number generator , 1969, CACM.

[2]  Michael Mascagni Parallel Linear Congruential Generators with Prime Moduli , 1998, Parallel Comput..

[3]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[4]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[5]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[6]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Hongmei Chi,et al.  Parallel linear congruential generators with Sophie-Germain moduli , 2004, Parallel Comput..

[8]  E. B. Wilson PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1919, Science.

[9]  M. Almond,et al.  Computers in Physics , 1971 .

[10]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  手塚 集 Uniform random numbers : theory and practice , 1995 .

[13]  Aaldert Compagner Definitions of randomness , 1991 .

[14]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[15]  Physics Letters , 1962, Nature.

[16]  B. Hayes The American Scientist , 1962, Nature.

[17]  Robert M. Ziff,et al.  Four-tap shift-register-sequence random-number generators , 1998 .

[18]  C. Barus AN AMERICAN JOURNAL OF PHYSICS. , 1902, Science.

[19]  Ora E. Percus,et al.  Random Number Generators for MIMD Parallel Processors , 1989, J. Parallel Distributed Comput..

[20]  October I Physical Review Letters , 2022 .

[21]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[22]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[23]  Elsevier Sdol,et al.  Journal of Parallel and Distributed Computing , 2009 .

[24]  N. Zierler Linear Recurring Sequences , 1959 .

[25]  D. Jungnickel Finite fields : structure and arithmetics , 1993 .

[26]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[27]  William H. Press,et al.  Numerical recipes in C , 2002 .

[28]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[29]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[30]  A. Compagner The hierarchy of correlations in random binary sequences , 1991 .

[31]  A. De Matteis,et al.  A class of parallel random number generators , 1990, Parallel Comput..

[32]  Michael C. Fu,et al.  Guest editorial , 2003, TOMC.

[33]  Makoto Matsumoto,et al.  Strong deviations from randomness in m-sequences based on trinomials , 1996, TOMC.

[34]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[35]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[36]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[37]  Stephan Mertens,et al.  Entropy of pseudo-random-number generators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  I Vattulainen,et al.  Framework for testing random numbers in parallel calculations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Fehmi Cirak,et al.  ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK , 1952, Über Stammfaktoren bei ternären quadratischen Formen.

[40]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[41]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[42]  Stephan Mertens,et al.  Pseudo Random Coins Show More Heads Than Tails , 2003 .

[43]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[44]  Peter Grassberger,et al.  On correlations in “good” random number generators , 1993 .

[45]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[46]  A. De Matteis,et al.  Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..

[47]  Rudolf Lide,et al.  Finite fields , 1983 .

[48]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[49]  Scott Kirkpatrick,et al.  A very fast shift-register sequence random number generatorjournal of computational physics , 1981 .

[50]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[51]  Hu Chuan-Gan,et al.  On The Shift Register Sequences , 2004 .

[52]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[53]  Brian Hayes,et al.  Randomness as a Resource , 2001, American Scientist.

[54]  Claus Boyens,et al.  Handbook of Computational Statistics , 2005 .

[55]  C. Caldwell Mathematics of Computation , 1999 .

[56]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[57]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[58]  Linus Schrage,et al.  A More Portable Fortran Random Number Generator , 1979, TOMS.

[59]  Jürgen Eichenauer-Herrmann,et al.  A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .

[60]  Jay P. Fillmore,et al.  Linear Recursive Sequences , 1968 .

[61]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[62]  Physical Review , 1965, Nature.

[63]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[64]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[65]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.